Bài 1: Sự đồng biến và nghịch biến của hàm số

MT

mọi người giải dùm em vs ạ bạn em nhờ em hỏi dùm 

em cảm ơn nhiềuundefinedundefinedundefined

MT
16 tháng 9 2021 lúc 16:55

cái hồi nãy thiếu câu hỏi em bổ sung ở dưới này ạ 

em cảm ơn mnundefined

Bình luận (1)
NL
17 tháng 9 2021 lúc 16:44

5.

TXĐ: \(D=\left(-\infty;-1\right)\cup\left(-1;+\infty\right)\)

\(y'=\dfrac{2}{\left(x+1\right)^2}>0\) ; \(\forall x\in D\) 

\(\Rightarrow\) Hàm đồng biến trên mỗi khoảng xác định

Hay hàm đồng biến trên \(\left(-\infty;-1\right)\) và \(\left(-1;+\infty\right)\)

6.

\(y=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

Dấu của y' trên trục số:

undefined

Từ đó ta thấy:

Hàm đồng biến trên các khoảng \(\left(-1;0\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Bình luận (0)
NL
17 tháng 9 2021 lúc 16:47

Tìm cực trị

a.

\(f'\left(x\right)=3x^2-3=0\Rightarrow x=\pm1\)

\(f''\left(x\right)=6x\)

\(f''\left(-1\right)=-6< 0\)

\(f''\left(1\right)=6>0\)

\(\Rightarrow x=-1\) là điểm cực đại và \(x=1\) là điểm cực tiểu

b.

\(f'\left(x\right)=-4x^3+4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

\(f''\left(x\right)=-12x^2+4\)

\(f''\left(0\right)=4>0\) ; \(f''\left(-1\right)=-8< 0\) ; \(f''\left(1\right)=-8< 0\)

\(\Rightarrow x=0\) là điểm cực tiểu và \(x=\pm1\) là 2 điểm cực đại

c.

\(f'\left(x\right)=\dfrac{3}{\left(x-1\right)^2}\ne0\) với mọi x thuộc miền xác định

Hàm không có cực trị

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
MT
Xem chi tiết
AN
Xem chi tiết
AN
Xem chi tiết
TN
Xem chi tiết
PN
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết