Những câu hỏi liên quan
HQ
Xem chi tiết
NT
8 tháng 7 2023 lúc 9:15

c: nếu n=3 thì đây ko phải phân số tối giản nha bạn

b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn

a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn

Bình luận (0)
H24
Xem chi tiết
NH
12 tháng 4 2023 lúc 19:28

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

Bình luận (0)
AB
Xem chi tiết
NT
28 tháng 1 2022 lúc 9:34

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Bình luận (0)
H24
28 tháng 1 2022 lúc 9:36

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

Bình luận (0)
ND
Xem chi tiết
NT
22 tháng 2 2023 lúc 19:51

a:

Sửa đề: \(\dfrac{n+1}{2n+3}\)

Gọi d=ƯCLN(n+1;2n+3)

=>2n+2-2n-3 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

b: Gọi d=ƯCLN(4n+8;2n+3)

=>4n+8-4n-6 chia hết cho d

=>2 chia hêt cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

Bình luận (0)
NP
Xem chi tiết
AH
17 tháng 4 2022 lúc 0:10

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.

Bình luận (0)
AB
Xem chi tiết
H24
Xem chi tiết
BT
24 tháng 1 2018 lúc 17:26

a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

Bình luận (0)
H24
25 tháng 1 2018 lúc 22:18

, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d

⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d

⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d

⇒2⋮d⇒2⋮d

⇒d∈{1;2}⇒d∈{1;2}

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d

⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

Bình luận (0)
VN
Xem chi tiết
NT
19 tháng 8 2023 lúc 21:54

a: Gọi d=ƯCLN(2n+7;2n+3)

=>2n+7 chia hết cho d và 2n+3 chia hết cho d

=>2n+7-2n-3 chia hết cho d

=>4 chia hết cho d

mà 2n+7 lẻ

nên d=1

=>PSTG

b: Gọi d=ƯCLN(6n+5;8n+7)

=>4(6n+5)-3(8n+7) chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

 

Bình luận (0)
NL
28 tháng 2 2024 lúc 19:38

1.    a. Tính :

1.    a. Tính :

Bình luận (0)
PH
Xem chi tiết
PL
26 tháng 11 2017 lúc 18:40

Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha

2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)

\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)

\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)

\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)

Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản

Bình luận (0)