\(\frac{1}{3}\le\frac{^{x^2}+x+1}{x^2-x+1}\le3\)CM
CMR: \(\frac{1}{3}\le\frac{x^2+x+1}{x^2-x+1}\le3\)
\(\cdot\left(x+1\right)^2\ge0\)
\(\Rightarrow x^2+2x+1>0\)
\(\Rightarrow2x^2+4x+2\ge0\)
\(\Rightarrow\left(3x^2+3x+3\right)-\left(x^2-x+1\right)\ge0\)
\(\Rightarrow3\left(x^2+x+1\right)\ge x^2-x+1\)
\(\Rightarrow\)\(\frac{x^2+x+1}{x^2-x+1}\ge\frac{1}{3}\) (1)
\(\cdot\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2x^2-4x+2\ge0\)
\(\Rightarrow\left(3x^2-3x+3\right)-\left(x^2+x+1\right)\ge0\)
\(\Rightarrow3\left(x^2-x+1\right)\ge x^2+x+1\)
\(\Rightarrow\frac{x^2+x+1}{x^2-x+1}\le3\)(2)
Từ(1),(2) => đpcm
Chứng minh rằng :
\(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
với \(\hept{\begin{cases}x,y,z\ge0\\x,y,z\le3\end{cases}}\)
chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)
ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)
\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)
\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)
\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)
chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)
áp dụng bất đẳng thức Cauchy ta có:
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)
ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)
kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
a)cho 1 ≤a ≤ 2 . c/m a+\(\frac{2}{a}\le3\)
b) cho x,y,z thỏa mãn 1 ≤ x ≤ y ≤ z ≤ 2
c/m (x+y+z) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{81}{8}\)
CMR: \(1\le\frac{2\left(x^2+x+1\right)}{x^2+1}\le3.\)
Ta có:
\(\frac{2.\left(x^2+x+1\right)}{x^2+1}=\frac{2.\left(x^2+1\right)+2x}{x^2+1}=2+\frac{2x}{x^2+1}\)
Ta có:\(2+\frac{2x}{x^2+1}-1=1+\frac{2x}{x^2+1}\)
\(=\frac{x^2+2x+1}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}\ge0\) \(\Rightarrow\frac{2.\left(x^2+x+1\right)}{x^2+1}\ge1\)
\(2+\frac{2x}{x^2+1}-3=\frac{2x}{x^2+1}-1=\frac{-x^2+2x-1}{x^2+1}\)
\(=\frac{-\left(x-1\right)^2}{x^2+1}\le0\) \(\Rightarrow\frac{2.\left(x^2+x+1\right)}{x^2+1}\le3\)
Vậy \(1\le\frac{2.\left(x^2+x+1\right)}{x^2+1}\le3\)
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
\(\hept{\begin{cases}1\le|5x-4|\le3\\\frac{x+1}{2}>\frac{2x+6}{3}\end{cases}}\)GIAI HE BAT PHUONG TRINH
Tìm giá trị lớn nhất của các biểu thức :
a, \(A=3x^2\left(8-x^2\right)\) với \(-2\sqrt{2}\le x\le2\sqrt{2}\)
b, B=(2x-1)(3-x) với 0,5\(\le x\le3\)
c, C=x(3-\(\sqrt{3}x\)) với 0\(\le x\le\sqrt{3}\)
d, D= 4x(8-5x) với 0\(\le x\le\frac{8}{5}̸\)
e, E= 4(x-1)(8-5x) với \(1\le x\le\frac{8}{5}\)
^-^
\(A=\frac{3}{4}.4.x^2\left(8-x^2\right)\le\frac{3}{4}\left(x^2+8-x^2\right)^2=48\)
\(A_{max}=48\) khi \(x^2=8-x^2\Rightarrow x=\pm2\)
\(B=\frac{1}{2}\left(2x-1\right)\left(6-2x\right)\le\frac{1}{8}\left(2x-1+6-2x\right)^2=\frac{25}{8}\)
\(B_{max}=\frac{25}{8}\) khi \(2x-1=6-2x\Rightarrow x=\frac{7}{4}\)
\(C=\frac{1}{\sqrt{3}}.\sqrt{3}x\left(3-\sqrt{3}x\right)\le\frac{1}{4\sqrt{3}}\left(\sqrt{3}x+3-\sqrt{3}x\right)^2=\frac{3\sqrt{3}}{4}\)
\(C_{max}=\frac{3\sqrt{3}}{4}\) khi \(\sqrt{3}x=3-\sqrt{3}x=\frac{\sqrt{3}}{2}\)
\(D=\frac{1}{20}.20x\left(32-20x\right)\le\frac{1}{80}\left(20x+32-20x\right)^2=\frac{64}{5}\)
\(D_{max}=\frac{64}{5}\) khi \(20x=32-20x\Rightarrow x=\frac{4}{5}\)
\(E=\frac{4}{5}\left(5x-5\right)\left(8-5x\right)\le\frac{1}{5}\left(5x-5+8-5x\right)=\frac{9}{5}\)
\(E_{max}=\frac{9}{5}\) khi \(5x-5=8-5x\Leftrightarrow x=\frac{13}{10}\)
Tìm số tự nhiên x, biết:
1) 2 + \(1\frac{1}{3}\)\(<\) x \(<1\frac{3}{7}+3\frac{1}{7}\)
2) \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\le\) x \(\le3\frac{1}{4}+1\frac{3}{4}\)
1. \(2+1\frac{1}{3}\)< x < \(1\frac{3}{7}+3\frac{1}{7}\)
=> \(3\frac{1}{3}\) < x < \(4\frac{4}{7}\)
=> x = 4
2. \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\le\)x\(\le3\frac{1}{4}+1\frac{3}{4}\)
=> 1 \(\le\) x \(\le5\)
=> x thuộc {1; 2; 3; 4; 5}.
Tìm x để biểu thức có nghĩa \(\frac{\sqrt{4-x}}{\sqrt{x+1}}+\sqrt{9-x^2}\)
Biểu thức có nghĩa khi \(\hept{\begin{cases}4-x\ge0\\x+1>0\\9-x^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le4\\x\ge1\\\left(3-x\right)\left(3+x\right)\ge0\end{cases}}\)\(\left(1\right)\)
\(\left(3-x\right)\left(3+x\right)\ge0\)
\(TH1:\hept{\begin{cases}3-x\ge0\\3+x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le3\\x\ge-3\end{cases}\Rightarrow}-3\le x\le3}\)\(\left(2\right)\)
\(TH2\hept{\begin{cases}3-x< 0\\3+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}\left(ktm\right)}}\)
TỪ ( 1 ) và ( 2 ) ta có : \(\hept{\begin{cases}1\le x\le4\\-3\le x\le3\end{cases}\Rightarrow1\le x\le3}\)
Vậy với \(1\le x\le3\)thì biểu thức xác định
Xl nha , ké chút ạ
Sai bất đẳng thức giữa của (1) rồi\(x+1>0\Leftrightarrow x>-1.\)
Suy ra phải sửa luôn mấy phần bên dưới. Và kết luận : \(-1< x\le3\)