Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
KC
Xem chi tiết
NL
19 tháng 4 2021 lúc 19:11

\(B=\dfrac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=\dfrac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)

\(=\dfrac{21}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-3\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)

\(=\dfrac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)

\(=60+15\sqrt{15}-15\sqrt{15}=60\)

Bình luận (0)
TN
Xem chi tiết
TN
12 tháng 4 2019 lúc 18:28

\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{20+4\sqrt{3}-10\sqrt{3}-6}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{4\left(5+\sqrt{3}\right)-2\sqrt{3}\left(5+\sqrt{3}\right)}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(4-2\sqrt{3}\right)\left(5+\sqrt{3}\right)}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\Rightarrow A=2\)

Bình luận (0)
NV
Xem chi tiết
AH
10 tháng 9 2020 lúc 15:09

Bài 1:
Xét tử số:

\(\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}=\sqrt{3^2+5+2.3\sqrt{5}}-\sqrt{3^2+5-2.3\sqrt{5}}\)

\(=\sqrt{(3+\sqrt{5})^2}-\sqrt{(3-\sqrt{5})^2}=3+\sqrt{5}-(3-\sqrt{5})=2\sqrt{5}\)

Xét mẫu số:
\(\sqrt{(\sqrt{5}+1)\sqrt{6-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{5+1-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{(\sqrt{5}-1)^2}}\)

\(=\sqrt{(\sqrt{5}+1)(\sqrt{5}-1)}=\sqrt{4}=2\)

Do đó: $A=\frac{2\sqrt{5}}{2}=\sqrt{5}$

Bình luận (0)
AH
10 tháng 9 2020 lúc 15:34

Bài 2:

a)

$B=(\sqrt[3]{2}+1)^3(\sqrt[3]{2}-1)^3$
$=[(\sqrt[3]{2}+1)(\sqrt[3]{2}-1)]^3$
$=(\sqrt[3]{4}-1)^3$

$=3-3\sqrt[3]{16}+3\sqrt[3]{4}$

b)

Với $a,b$ đã cho ta đặt $\sqrt[3]{2}=x$. Khi đó:

\(a=\frac{6}{2x-2+\frac{2}{x}}=\frac{3x}{x^2-x+1}=\frac{3x(x+1)}{x^3+1}=\frac{3x(x+1)}{2+1}=x(x+1)\)

\(b=\frac{2}{2x+2+\frac{2}{x}}=\frac{x}{x^2+x+1}=\frac{x(x-1)}{x^3-1}=\frac{x(x-1)}{2-1}=x(x-1)\)

Khi đó:

$C=a^3b-ab^3=ab(a^2-b^2)=ab(a-b)(a+b)$

$=x^2(x^2-1)(2x)(2x^2)=4x^5(x^2-1)=8\sqrt[3]{4}(\sqrt[3]{4}-1)$

Bình luận (0)
AH
10 tháng 9 2020 lúc 15:51

Bài 3:

Ta biết rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ với mọi $x\in\mathbb{R}$

Do đó:

$|x^2-x+1|-|x-2|=6$

$\Leftrightarrow x^2-x+1-|x-2|=6(*)$

Nếu $x\geq 2$ thì $(*)\Leftrightarrow x^2-x+1-(x-2)=6$

$\Leftrightarrow x^2-2x-3=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x=3$ (do $x\geq 2$)

Nếu $x< 2$ thì $(*)\Leftrightarrow x^2-x+1-(2-x)=6$

$\Leftrightarrow x^2-7=0$

$\Rightarrow x=-\sqrt{7}$ (do $x< 2$)

Vậy........

Bình luận (0)
MN
Xem chi tiết
HT
9 tháng 6 2017 lúc 18:44

\(=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}}\)

\(=\left(\sqrt{3}+1\right)\sqrt{\frac{70-14\sqrt{3}-30\sqrt{3}+18}{25-\sqrt{3}^2}}\)

\(=\left(\sqrt{3}+1\right)\sqrt{\frac{88-44\sqrt{3}}{22}}\)

\(=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)

Bình luận (0)
NN
Xem chi tiết
HH
Xem chi tiết
VH
29 tháng 5 2018 lúc 23:41

mình không viết lại đề nha 

\(=\sqrt{\frac{\left(\sqrt{3}+1\right)^2.\left(14-6\sqrt{3}\right)}{5+\sqrt{3}}}\)

\(=\sqrt{\frac{\left(3+2\sqrt{3}+1\right).\left(14-6\sqrt{3}\right)}{5+\sqrt{3}}}\)

\(=\sqrt{\frac{\left(4+2\sqrt{3}\right).\left(14-6\sqrt{3}\right)}{5+\sqrt{3}}}\)

\(=\sqrt{\frac{56-24\sqrt{3}+28\sqrt{3}-36}{5+\sqrt{3}}}\)

\(=\sqrt{\frac{20+4\sqrt{3}}{5+\sqrt{3}}}\)

\(=\sqrt{\frac{\left(20+4\sqrt{3}\right).\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right).\left(5-\sqrt{3}\right)}}\)

\(=\sqrt{\frac{100-20\sqrt{3}+20\sqrt{3}-12}{5^2-\sqrt{3}^2}}\)

\(=\sqrt{\frac{88}{25-3}}\)

\(=\sqrt{\frac{88}{22}}\)

\(=\sqrt{4}\)

\(=2\)

HỌC TỐT !!! 

Bình luận (0)
FG
Xem chi tiết
NT
23 tháng 7 2020 lúc 13:27

Bài 2:

Ta có: \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)

\(=\frac{\sqrt{\sqrt{5}-1}\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)}{2}-\sqrt{2-2\cdot\sqrt{2}\cdot1+1}\)

\(=\frac{\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}}{2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(=\frac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}}{2\sqrt{2}}-\left(\sqrt{2}-1\right)\)

\(=\frac{\sqrt{5}+1+3-\sqrt{5}}{2\sqrt{2}}-\sqrt{2}+1\)

\(=\frac{4}{2\sqrt{2}}-\sqrt{2}+1\)

\(=\sqrt{2}-\sqrt{2}+1\)

=1

Bình luận (0)
PT
23 tháng 7 2020 lúc 22:18

câu 1. đkxđ: \(x\ge\frac{1}{2}\)
\(A\sqrt{2}=\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)

\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)

\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(=\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)

nếu \(\left|\sqrt{2x-1}-1\right|=\sqrt{2x-1}-1\) với \(\sqrt{2x-1}\ge1\Leftrightarrow x\ge1\)

thì \(A\sqrt{2}=\sqrt{2x-1}+1-\sqrt{2x-1}+1=2\)

=> A=\(\sqrt{2}\)

nếu \(\left|\sqrt{2x-1}-1\right|=1-\sqrt{2x-1}\) với \(\frac{1}{2}\le x< 1\)

thì \(A\sqrt{2}=\sqrt{2x-1}+1-1+\sqrt{2x-1}=2\sqrt{2x-1}\)

=> A= \(\sqrt{4x-2}\)

Bình luận (0)
PT
23 tháng 7 2020 lúc 22:41

câu 3: C = \(\frac{\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)}{\left(\text{4+\sqrt{15}}\right)\left(\sqrt{10-\sqrt{6}}\right)\sqrt{4-\sqrt{15}}}\)

\(=\frac{\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}}{\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)

=\(\frac{\sqrt{9-\left(\sqrt{5}\right)^2}\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}}{\sqrt{16-\left(\sqrt{15}\right)^2}.\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{15}}}\)

\(=\frac{2\left(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\right)}{\sqrt{40+10\sqrt{15}}-\sqrt{24-6\sqrt{15}}}\)

\(=2.\frac{\left(\sqrt{5}+5\right)-\left(\sqrt{5}+1\right)}{\left(\sqrt{15}+5\right)-\left(\sqrt{15}+3\right)}\)

= 4

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết