Violympic toán 9

NV

1. Rút gọn \(A=\frac{\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}}{\sqrt{\left(\sqrt{5}+1\right)\cdot\sqrt{6-2\sqrt{5}}}}\)

2.Tính a) \(B=\left(\sqrt[3]{2}+1\right)^3\cdot\left(\sqrt[3]{2}-1\right)^3\)

b)Tìm C=\(a^3b-ab^3\) với \(a=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\); \(b=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)

3. Giải \(\left|x^2-x+1\right|-\left|x-2\right|=6\)

AH
10 tháng 9 2020 lúc 15:09

Bài 1:
Xét tử số:

\(\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}=\sqrt{3^2+5+2.3\sqrt{5}}-\sqrt{3^2+5-2.3\sqrt{5}}\)

\(=\sqrt{(3+\sqrt{5})^2}-\sqrt{(3-\sqrt{5})^2}=3+\sqrt{5}-(3-\sqrt{5})=2\sqrt{5}\)

Xét mẫu số:
\(\sqrt{(\sqrt{5}+1)\sqrt{6-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{5+1-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{(\sqrt{5}-1)^2}}\)

\(=\sqrt{(\sqrt{5}+1)(\sqrt{5}-1)}=\sqrt{4}=2\)

Do đó: $A=\frac{2\sqrt{5}}{2}=\sqrt{5}$

Bình luận (0)
AH
10 tháng 9 2020 lúc 15:34

Bài 2:

a)

$B=(\sqrt[3]{2}+1)^3(\sqrt[3]{2}-1)^3$
$=[(\sqrt[3]{2}+1)(\sqrt[3]{2}-1)]^3$
$=(\sqrt[3]{4}-1)^3$

$=3-3\sqrt[3]{16}+3\sqrt[3]{4}$

b)

Với $a,b$ đã cho ta đặt $\sqrt[3]{2}=x$. Khi đó:

\(a=\frac{6}{2x-2+\frac{2}{x}}=\frac{3x}{x^2-x+1}=\frac{3x(x+1)}{x^3+1}=\frac{3x(x+1)}{2+1}=x(x+1)\)

\(b=\frac{2}{2x+2+\frac{2}{x}}=\frac{x}{x^2+x+1}=\frac{x(x-1)}{x^3-1}=\frac{x(x-1)}{2-1}=x(x-1)\)

Khi đó:

$C=a^3b-ab^3=ab(a^2-b^2)=ab(a-b)(a+b)$

$=x^2(x^2-1)(2x)(2x^2)=4x^5(x^2-1)=8\sqrt[3]{4}(\sqrt[3]{4}-1)$

Bình luận (0)
AH
10 tháng 9 2020 lúc 15:51

Bài 3:

Ta biết rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ với mọi $x\in\mathbb{R}$

Do đó:

$|x^2-x+1|-|x-2|=6$

$\Leftrightarrow x^2-x+1-|x-2|=6(*)$

Nếu $x\geq 2$ thì $(*)\Leftrightarrow x^2-x+1-(x-2)=6$

$\Leftrightarrow x^2-2x-3=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x=3$ (do $x\geq 2$)

Nếu $x< 2$ thì $(*)\Leftrightarrow x^2-x+1-(2-x)=6$

$\Leftrightarrow x^2-7=0$

$\Rightarrow x=-\sqrt{7}$ (do $x< 2$)

Vậy........

Bình luận (0)
AH
10 tháng 9 2020 lúc 18:16

Nguyễn Hoàng Vũ:

Đặt \(\sqrt[3]{2}+1=a; \sqrt[3]{2}-1=b\)

Khi đó: \(a+b=2\sqrt[3]{2}; ab=\sqrt[3]{4}-1\)

\((\sqrt[3]{2}+1)^3+(\sqrt[3]{2}-1)^3=a^3+b^3=(a+b)^3-3ab(a+b)\)

\(=(2\sqrt[3]{2})^3-3(\sqrt[3]{4}-1).2\sqrt[3]{2}=16-(12-6\sqrt[3]{2})=4+6\sqrt[3]{2}\)

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
AM
Xem chi tiết
DT
Xem chi tiết
HG
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
NH
Xem chi tiết
DN
Xem chi tiết
ZZ
Xem chi tiết