Những câu hỏi liên quan
H24
Xem chi tiết
PT
Xem chi tiết
PC
Xem chi tiết
HN
Xem chi tiết
NT
10 tháng 7 2022 lúc 22:27

Câu 2:

a: \(=\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{72\cdot2}=12\)

b: \(=\sqrt{\left(65-63\right)\left(65+63\right)}=\sqrt{128\cdot2}=16\)

c: \(=\sqrt{\left(221-220\right)\left(221+220\right)}=\sqrt{441}=21\)

d: \(=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{225\cdot9}=3\cdot15=45\)

Bình luận (0)
HV
Xem chi tiết
NQ
Xem chi tiết
GH
24 tháng 6 2023 lúc 20:23

 

 

a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:

x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3

Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.

b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:

(x-2)(x+2) = 0 x = 2 hoặc x = -2

Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.

c) Để tìm nghiệm của đa thức x^2 + 7, ta không thể giải phương trình x^2 + 7 = 0 vì không có số nào bình phương bằng 7. Vì vậy, đa thức này không có nghiệm trong tập số thực.

d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:

x = 0 hoặc x = -5

Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.

e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:

x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1

Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.

f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.

h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:

Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - Δ) / 2a = (-11 - 3) / 14 = -7/2

Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.

 

(tham khảo

20:22  

 

Bình luận (0)
GH
24 tháng 6 2023 lúc 20:29

a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:

x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3

Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.

b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:

(x-2)(x+2) = 0 x = 2 hoặc x = -2

Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.

c) Để tìm nghiệm của đa thức x^2 + 7, ta không thể giải phương trình x^2 + 7 = 0 vì không có số nào bình phương bằng 7. Vì vậy, đa thức này không có nghiệm trong tập số thực.

d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:

x = 0 hoặc x = -5

Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.

e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:

x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1

Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.

f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.

h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:

Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - Δ) / 2a = (-11 - 3) / 14 = -7/2

Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.

 

tham khảo

20:22  
Bình luận (0)
GH
24 tháng 6 2023 lúc 20:29

 

20:22

a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:

x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3

Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.

b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:

(x-2)(x+2) = 0 x = 2 hoặc x = -2

Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.

c) Để tìm nghiệm của đa thức x^2 + 7, ta không thể giải phương trình x^2 + 7 = 0 vì không có số nào bình phương bằng 7. Vì vậy, đa thức này không có nghiệm trong tập số thực.

d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:

x = 0 hoặc x = -5

Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.

e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:

x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1

Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.

f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.

h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:

Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - Δ) / 2a = (-11 - 3) / 14 = -7/2

Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.

20:22  
Bình luận (0)
NH
Xem chi tiết
NH
12 tháng 11 2019 lúc 17:15

ai nhNH MK K

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
H9
14 tháng 10 2023 lúc 18:59

a) \(12\cdot\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\)

\(=12\cdot\dfrac{4}{9}+\dfrac{4}{3}\)

\(=\dfrac{12\cdot4}{9}+\dfrac{4}{3}\)

\(=\dfrac{16}{3}+\dfrac{4}{3}\)

\(=\dfrac{16+4}{3}\)

\(=\dfrac{20}{3}\)

b) \(\left(\dfrac{3}{2}\right)^2-\left[0,5:2-\sqrt{81}\cdot\left(-\dfrac{1}{2}\right)^2\right]\)

\(=\dfrac{9}{4}-\left(\dfrac{1}{2}:2-9\cdot\dfrac{1}{4}\right)\)

\(=\dfrac{9}{4}-\left(\dfrac{1}{4}-9\cdot\dfrac{1}{4}\right)\)

\(=\dfrac{9}{4}-\dfrac{1}{4}\cdot\left(1-9\right)\)

\(=\dfrac{9}{4}+\dfrac{8}{4}\)

\(=\dfrac{17}{4}\) 

c) \(\left(-\dfrac{3}{4}+\dfrac{2}{3}\right):\dfrac{5}{11}+\left(-\dfrac{1}{4}+\dfrac{1}{3}\right)\)

\(=-\dfrac{1}{12}:\dfrac{5}{11}+\dfrac{1}{12}\)

\(=\dfrac{1}{12}\cdot-\dfrac{11}{5}+\dfrac{1}{12}\)

\(=\dfrac{1}{12}\cdot\left(-\dfrac{11}{5}+1\right)\)

\(=\dfrac{1}{12}\cdot-\dfrac{6}{5}\)

\(=-\dfrac{1}{10}\) 

d) \(\dfrac{\left(-1\right)^3}{15}+\left(-\dfrac{2}{3}\right)^2:2\dfrac{2}{3}-\left|-\dfrac{5}{6}\right|\)

\(=-\dfrac{1}{15}+\dfrac{4}{9}:\left(2+\dfrac{2}{3}\right)-\dfrac{5}{6}\)

\(=-\dfrac{1}{15}+\dfrac{4}{9}:\dfrac{8}{3}-\dfrac{5}{6}\)

\(=-\dfrac{9}{10}+\dfrac{1}{6}\)

\(=-\dfrac{11}{15}\) 

e) \(\dfrac{3^7\cdot8^6}{6^6\cdot\left(-2\right)^{12}}\)

\(=\dfrac{3^7\cdot\left(2^3\right)^6}{2^6\cdot3^6\cdot2^{12}}\)

\(=\dfrac{3^7\cdot2^{18}}{2^{6+12}\cdot3^6}\)

\(=\dfrac{2^{18}\cdot3^7}{2^{18}\cdot3^6}\)

\(=3^{7-6}\)

\(=3\)

Bình luận (0)
H24
14 tháng 10 2023 lúc 19:02

\(a,12\cdot\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\\ =12\cdot\dfrac{4}{9}+\dfrac{4}{3}\\ =\dfrac{16}{3}+\dfrac{4}{3}\\ =\dfrac{20}{3}\\ b,\left(\dfrac{3}{2}\right)^2-\left[0,5:2-\sqrt{81}.\left(-\dfrac{1}{2}\right)^2\right]\\ =\dfrac{9}{4}-\left(\dfrac{1}{2}\cdot\dfrac{1}{2}-9\cdot\dfrac{1}{4}\right)\\ =\dfrac{9}{4}-\left(\dfrac{1}{4}-\dfrac{9}{4}\right)\\ =\dfrac{9}{4}-\left(-\dfrac{8}{4}\right)\\ =\dfrac{17}{4}\)

\(c,\left(-\dfrac{3}{4}+\dfrac{2}{3}\right):\dfrac{5}{11}+\left(-\dfrac{1}{4}+\dfrac{1}{3}\right)\\ =\left(-\dfrac{9}{12}+\dfrac{8}{12}\right)\cdot\dfrac{11}{5}+\left(-\dfrac{3}{12}+\dfrac{4}{12}\right)\\ =-\dfrac{1}{12}\cdot\dfrac{11}{5}+\dfrac{1}{12}\\ =-\dfrac{11}{60}+\dfrac{1}{12}\\ =-\dfrac{1}{10}\)

\(d,\dfrac{-1^3}{15}+\left(-\dfrac{2}{3}\right)^2:2\dfrac{2}{3}-\left(-\dfrac{5}{6}\right)\\ =-\dfrac{1}{15}+\dfrac{4}{9}\cdot\dfrac{3}{8}+\dfrac{5}{6}\\ =-\dfrac{1}{15}+\dfrac{1}{6}+\dfrac{5}{6}\\ =\dfrac{1}{10}+\dfrac{5}{6}\\ =\dfrac{14}{15}\)

`e,` Không hiểu đề á c: )

Bình luận (0)
NT
Xem chi tiết
NT
19 tháng 8 2023 lúc 22:05

a: \(3\sqrt{200}=3\cdot10\sqrt{2}=30\sqrt{2}\)

b: \(-5\sqrt{50a^2b^2}=-5\cdot5\sqrt{2a^2b^2}\)

\(=-25\cdot\left|ab\right|\cdot\sqrt{5}\)

c: \(-\sqrt{75a^2b^3}\)

\(=-\sqrt{25a^2b^2\cdot3b}=-5\left|ab\right|\cdot\sqrt{3b}\)

Bình luận (0)