Những câu hỏi liên quan
DT
Xem chi tiết
NT
25 tháng 1 2021 lúc 19:12

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+4y=9\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=8-y=8-\dfrac{1}{3}=\dfrac{23}{3}\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{23}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

b) Để hệ phương trình có nghiệm (1;3) thì 

Thay x=1 và y=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}m+12=9\\1+3m=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\3m=7\end{matrix}\right.\Leftrightarrow m\notin\varnothing\)

Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm (1;3)

Bình luận (0)
TT
25 tháng 1 2021 lúc 19:19

Thay m=1 vào hpt trên ta có:

1.x+4y=9 và x+1y=8

<=> x+4y=9 và x+y=8

<=>  x+4y=9 và 4x+4y=32

<=> -3x = -23 và  x+y=8

<=> x = \(\dfrac{23}{3}\) và y = \(\dfrac{1}{3}\)

b) Để hệ phương trình có nghiệm (1;3)

=> x = 1; y = 3

Thay x = 1; y = 3 vào hpt trên ta có:

       m1+43=9 và 1+m3=8

<=> m+12 = 9 và 1 + 3m = 8

<=> m = -3 và m = \(\dfrac{7}{3}\)

Vậy m \(\in\left\{-3;\sqrt{\dfrac{7}{3}}\right\}\) thì hệ phương trình có nghiệm (1;3)

c) mx+4y=9 và x+my=8 

SD phương pháp thế

Ra pt bậc nhất 1 ẩn: 8m - m2y + 4y = 9

                       <=> 8m -  y(m-4) = 9

Để hệ phương trình có nghiệm duy nhất => m-4 \(\ne\) 0

<=> m \(\ne\) 4

<=> m  \(\ne\) 2 và m  \(\ne\) -2

 

Bình luận (0)
LM
Xem chi tiết
NT
23 tháng 12 2023 lúc 20:19

a: Thay m=-2 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-2y=-2+1=-1\\-2x+y=3\cdot\left(-2\right)-1=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y=-2\\-2x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\x-2y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=3\\x=2y-1=2\cdot3-1=5\end{matrix}\right.\)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(-m^2+1\right)=3m-1-m^2-m=-m^2+2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(m-1\right)\left(m+1\right)=\left(m-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-m\cdot\dfrac{m-1}{m+1}=\left(m+1\right)-\dfrac{m^2-m}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)

\(x^2-y^2=4\)

=>\(\dfrac{\left(3m+1\right)^2-\left(m-1\right)^2}{\left(m+1\right)^2}=4\)

=>\(\dfrac{9m^2+6m+1-m^2+2m+1}{\left(m+1\right)^2}=4\)

=>\(8m^2+8m+2=4\left(m+1\right)^2\)

=>\(8m^2+8m+2-4m^2-8m-4=0\)

=>\(4m^2-2=0\)

=>\(m^2=\dfrac{1}{2}\)

=>\(m=\pm\dfrac{1}{\sqrt{2}}\)

Bình luận (0)
H24
Xem chi tiết
TN
Xem chi tiết
LB
Xem chi tiết
NL
4 tháng 1 2021 lúc 16:04

a. Bạn tự giải

b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)

Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên

Bình luận (0)
HJ
Xem chi tiết
KH
Xem chi tiết
PB
Xem chi tiết
CT
27 tháng 5 2017 lúc 2:12

Xét hệ 

m x + y = 3 4 x + m y = 6 ⇔ y = 3 − m x 4 x + m 3 − m x = 6 ⇔ y = 3 − m x 4 x + 3 m − m 2 x = 6 ⇔ y = 3 − m x 4 − m 2 x = 6 − 3 m ⇔ y = 3 − m x                                 1 m 2 − 4 x = 3 m − 2       2

Hệ phương trình đã cho có nghiệm duy nhất ⇔ (2) có nghiệm duy nhất

m 2 – 4 ≠ 0 ⇔ m ≠ ± 2 ( * )

Khi đó hệ đã cho có nghiệm duy nhất

⇔ x = 3 m + 2 y = 3 − 3 m m + 2 ⇔ x = 3 m + 2 y = 6 m + 2

Ta có

x > 0 y > 2 ⇔ 3 m + 2 > 0 6 m + 2 > 1 ⇔ m + 2 > 0 4 − m m + 2 > 0 ⇔ m > − 2 4 − m > 0 ⇔ m > − 2 m < 4 ⇔ − 2 < m < 4

Kết hợp với (*) ta được giá trị m cần tìm là – 2 < m < 4; m ≠ 2

Đáp án: A

Bình luận (0)
HJ
Xem chi tiết
NA
28 tháng 12 2022 lúc 22:07

a) Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+4y=10-0\\x+0y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{5}{2}\end{matrix}\right.\) (nhận trường hợp này).

Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=10-m\\-mx-m^2y=-4m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-m^2\right)y=10-5m\left(1\right)\\x+my=4\left(2\right)\end{matrix}\right.\)

Biện luận:

Với \(m=2\) \(\left(1\right)\Rightarrow0y=0\) (phương trình vô số nghiệm),

Với \(m=-2\Rightarrow0y=20\) (phương trình vô nghiệm).

Với \(m\ne\pm2\Rightarrow y=\dfrac{10-5m}{4-m^2}=\dfrac{5\left(2-m\right)}{\left(2-m\right)\left(2+m\right)}=\dfrac{5}{m+2}\)

Vì \(y>0\Rightarrow\dfrac{5}{m+2}>0\Leftrightarrow m+2>0\Leftrightarrow m>-2\)

Thay \(y=\dfrac{5}{m+2}\) vào (2) ta được:

\(x+\dfrac{5m}{m+2}=4\Leftrightarrow x=\dfrac{8-m}{m+2}\)

Vì x>0 \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-m>0\\m+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-m< 0\\m+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< m< 8\)

Vì m là số nguyên và \(m\ne2\) nên \(m\in\left\{-1;0;1;3;4;5;6;7\right\}\)

Vậy \(m\in\left\{1;0;1;3;4;5;6;7\right\}\) thì hệ đã cho có nghiệm duy nhất sao cho \(x>0,y>0\).

 

 

Bình luận (0)
NA
28 tháng 12 2022 lúc 22:20

b) Với \(m=0\) ta có nghiệm \(\left(x;y\right)=\left(4;\dfrac{5}{2}\right)\) (loại).

Với \(m=2\). Ta có hệ vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-\dfrac{x}{2}\end{matrix}\right.\)

Vì y là số nguyên dương nên:

\(\left\{{}\begin{matrix}x⋮2\\2-\dfrac{x}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮2\\x< 4\end{matrix}\right.\). Mặt khác x>0.

\(\Rightarrow x=2\Rightarrow y=1\)
Với \(m\ne\pm2\). Ta có \(y=\dfrac{5}{m+2}\).

Vì x,y là các số nguyên dương nên x,y>0. Nên:

\(m\in\left\{-1;0;1;3;4;5;6;7\right\}\) (1')

Mặt khác: \(5⋮\left(m+2\right)\)

\(\Rightarrow m+2\inƯ\left(5\right)\)

\(\Rightarrow m+2\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow m\in\left\{-1;-3;3;-7\right\}\) (2')

Từ (1') ,(2') \(\Rightarrow m\in\left\{-1;3\right\}\)

Vậy \(m\in\left\{-1;2;3\right\}\) thì hệ có nghiệm \(\left(x;y\right)\) với x,y là số nguyên dương.

 

Bình luận (0)