Những câu hỏi liên quan
WN
Xem chi tiết
H24
10 tháng 4 2021 lúc 22:38

Câu 1. thiếu đề đó bạn ạ 

Câu 2: 

Ta có: x^3+15x^2+74x+120 

=(x^3+4x^2) + (11x^2+44x) + (30x+120)

=(x+4)(x^2+11x+30)

=(x+4)(x+5)(x+6)

Ta có bảng xét dấu 

x -6 -5 -4 
x+4-|-|-|+
x+5-|-|+|+
x+6-|+|+|+

Để (x+4)(x+5)(x+6)<0 

Khi có chỉ 1 số âm hoặc cả 3 số âm

<=> x<-6 hoặc -5<x<-4

 

Bình luận (1)
NL
Xem chi tiết
H24
19 tháng 1 2022 lúc 21:11

\(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow\dfrac{2\sqrt{x}\sqrt{x}}{2\sqrt{x}}+\dfrac{1}{2\sqrt{x}}=\dfrac{3.2\sqrt{x}}{2\sqrt{x}}\)

\(\Leftrightarrow\dfrac{2x}{2\sqrt{x}}-\dfrac{6\sqrt{x}}{2\sqrt{x}}+\dfrac{1}{2\sqrt{x}}=0\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
19 tháng 1 2022 lúc 21:12

\(\Rightarrow2x+1=6\sqrt{x}\)

\(\Rightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\dfrac{3\pm\sqrt{7}}{2}\)

\(\Rightarrow x=\left(\dfrac{3\pm\sqrt{7}}{2}\right)^2=\dfrac{8\pm3\sqrt{7}}{2}\)

Bình luận (0)
HN
Xem chi tiết
NT
19 tháng 4 2023 lúc 9:17

2:

a: =>x-1=0 hoặc 3x+1=0

=>x=1 hoặc x=-1/3

b: =>x-5=0 hoặc 7-x=0

=>x=5 hoặc x=7

c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)

d: =>x=0 hoặc x^2-1=0

=>\(x\in\left\{0;1;-1\right\}\)

Bình luận (0)
H24
18 tháng 4 2023 lúc 20:42

Bạn tách ra từng câu thoi nhe .

Bình luận (0)
AA
Xem chi tiết
H24
12 tháng 4 2023 lúc 0:26

\(2\left(x^2-x\right)-x\left(x+2\right)+4=0\)

\(\Leftrightarrow2x^2-2x-x^2-2x+4=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(S=\left\{2\right\}\)

Bình luận (0)
DC
Xem chi tiết
MA
20 tháng 4 2022 lúc 22:58

a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)

Bình luận (0)
TM
Xem chi tiết
H24
2 tháng 3 2022 lúc 12:43

a. \(x^2-25-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5\right)-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b. \(\left(3x+1\right)^2=\left(2x-5\right)\\ \Leftrightarrow9x^2+6x+1=2x-5\\ \Leftrightarrow9x^2+6x-2x=-5-1\\ \Leftrightarrow9x^2+4x=-6\\ \Leftrightarrow x\left(9x+4\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\9x+4=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{10}{9}\end{matrix}\right.\)

c. \(2x^2-7x+6=0\\ \Leftrightarrow2x^2-7x=-6\\ \Leftrightarrow x\left(2x-7\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
NT
2 tháng 3 2022 lúc 12:39

a, \(\left(x-5\right)\left(x+5\right)-3\left(x-5\right)=0\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\Leftrightarrow x=-2;x=5\)

b, bạn ktra lại đề, thường thường ngta hay cho 2 vế cùng bình phương 

c, \(2x^2-7x+6=0\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\Leftrightarrow x=\dfrac{3}{2};x=2\)

Bình luận (1)
NT
2 tháng 3 2022 lúc 13:02

\(\left(3x+1\right)^2=\left(2x-5\right)^2\)

\(\left[{}\begin{matrix}3x+1=2x-5\\3x+1=5-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\5x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\dfrac{4}{5}\end{matrix}\right.\)

Bình luận (0)
BT
Xem chi tiết
TH
1 tháng 6 2021 lúc 11:15

a) PT \(\Leftrightarrow\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}=3\).

Ta có \(\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}\ge\sqrt{9}=3\).

Đẳng thức xảy ra khi và chỉ khi x = -1.

Vậy..

Bình luận (0)
LH
1 tháng 6 2021 lúc 13:10

b) \(x^2=\sqrt{x^3-x^2}+\sqrt{x^2-x}\)

Đk: \(\left\{{}\begin{matrix}x^3-x^2\ge0\\x^2-x\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\ge1\end{matrix}\right.\)

Thay x=0 vào pt thấy thỏa mãn => x=0 là một nghiệm của pt

Xét \(x\ge1\) 

Pt \(\Leftrightarrow x^4=\left(\sqrt{x^3-x^2}+\sqrt{x^2-x}\right)^2\le2\left(x^3-x\right)\) (Theo bđt bunhiacopxki)

\(\Leftrightarrow x^4\le2x\left(x^2-1\right)\le\left(x^2+1\right)\left(x^2-1\right)=x^4-1\)

\(\Leftrightarrow0\le-1\) (vô lí)

Vậy x=0

c) \(\sqrt{x-1}+\sqrt{3-x}+x^2+2x-3-\sqrt{2}=0\)  (đk: \(1\le x\le3\))

Xét x-1=0 <=> x=1 thay vào pt thấy thỏa mãn => x=1 là một nghiệm của pt

Xét \(x\ne1\)

Pt\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-1}}+\dfrac{1-x}{\sqrt{3-x}+\sqrt{2}}+\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\right)=0\) (1)

Xét \(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\)

Có \(\sqrt{3-x}+\sqrt{2}\ge\sqrt{2}\) 

\(\Leftrightarrow\dfrac{-1}{\sqrt{3-x}+\sqrt{2}}\ge-\dfrac{1}{\sqrt{2}}\)

Có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}>0\\x+3\ge4\end{matrix}\right.\)  \(\Rightarrow\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3>0-\dfrac{1}{\sqrt{2}}+4>0\)

Từ (1) => x-1=0 <=> x=1

Vậy pt có nghiệm duy nhất x=1

Bình luận (0)
NN
Xem chi tiết
NT
2 tháng 2 2024 lúc 11:31

a: 3(x+7)-2x+5>0

=>3x+21-2x+5>0

=>x+26>0

=>x>-26

Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)

=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)

=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)

=>\(4x+8-9x-27< 8x-8-3x+12\)

=>-5x-19<5x+4

=>-10x<23

=>\(x>-\dfrac{23}{10}\)

b: \(3x+2+\left|x+5\right|=0\left(1\right)\)

TH1: x>=-5

(1) trở thành: 3x+2+x+5=0

=>4x+7=0

=>\(x=-\dfrac{7}{4}\left(nhận\right)\)

TH2: x<-5

=>x+5<0

=>|x+5|=-x-5

Phương trình (1) sẽ trở thành:

\(3x+2-x-5=0\)

=>2x-3=0

=>2x=3

=>\(x=\dfrac{3}{2}\)

Bình luận (0)
KQ
Xem chi tiết
TT
24 tháng 2 2022 lúc 22:18

\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)

Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)

Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)

Bảng xét dấu:

x                   \(-\infty\)       -3       1       2     \(+\infty\)

\(x-2\)                    -      |    -   |   -   0   +

\(x^2+2x-3\)         +     0    -   0  +   |    +

\(f\left(x\right)\)                     -     0    +  0   -  0   +

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)

\(b)\dfrac{x^2-9}{-x+5}< 0.\)

Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)

Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)

\(-x+5=0.\Leftrightarrow x=5.\)

Bảng xét dấu:

x            \(-\infty\)      -3       3        5       \(+\infty\)

\(x^2-9\)            +   0   -   0   +   |    +

\(-x+5\)          +    |   +   |    +  0    -

\(g\left(x\right)\)              +    0   -   0   +  ||    -

Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)

Bình luận (0)