Giải pt 2x - 3 = 0
Giúp tui
1/giải pt :/x-3/-/x^2-x+1/
2/ giải BĐT :x^3+15x^2+74x+120<0
giúp mik với mn
Câu 1. thiếu đề đó bạn ạ
Câu 2:
Ta có: x^3+15x^2+74x+120
=(x^3+4x^2) + (11x^2+44x) + (30x+120)
=(x+4)(x^2+11x+30)
=(x+4)(x+5)(x+6)
Ta có bảng xét dấu
x | -6 | -5 | -4 | ||||
x+4 | - | | | - | | | - | | | + |
x+5 | - | | | - | | | + | | | + |
x+6 | - | | | + | | | + | | | + |
Để (x+4)(x+5)(x+6)<0
Khi có chỉ 1 số âm hoặc cả 3 số âm
<=> x<-6 hoặc -5<x<-4
\(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=3\)
Giải pt với x>0
Giúp với mai thi
\(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=3\)
\(\Leftrightarrow\dfrac{2\sqrt{x}\sqrt{x}}{2\sqrt{x}}+\dfrac{1}{2\sqrt{x}}=\dfrac{3.2\sqrt{x}}{2\sqrt{x}}\)
\(\Leftrightarrow\dfrac{2x}{2\sqrt{x}}-\dfrac{6\sqrt{x}}{2\sqrt{x}}+\dfrac{1}{2\sqrt{x}}=0\)
\(\Leftrightarrow2x-6\sqrt{x}+1=0\)
\(\Leftrightarrow...\)
\(\Rightarrow2x+1=6\sqrt{x}\)
\(\Rightarrow2x-6\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\dfrac{3\pm\sqrt{7}}{2}\)
\(\Rightarrow x=\left(\dfrac{3\pm\sqrt{7}}{2}\right)^2=\dfrac{8\pm3\sqrt{7}}{2}\)
Bài1: giải các pt sau:
a, 3-4x+24+6x= x+27+3x
b, 5-(6-x)=4(3-2x)
c, x-(x+1)/3 = (2x+1)/5
d,(2x-1)/3 - (5x+2)/7 = x+13
Bài 2:
a, (x-1)(3x+1)=0
b, (x-5)(7-x)=0
c, ( x-1)(x+5)(-3x+8)=0
d, x(x^2 - 1 )=0
Giúp mình 2 bài này với , mình đang cần gấp , CẢM ƠN M.N ạ><
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
Giải pt sau:
2(x2 - x) - x(x + 2) + 4 = 0
Giúp mik vs mọi người ơi
\(2\left(x^2-x\right)-x\left(x+2\right)+4=0\)
\(\Leftrightarrow2x^2-2x-x^2-2x+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
Bài1:Giải phương trình:
a,(5-x)(3-2x)(3x+4)=0
b,(2x-1)(3x+2)(5-x)=0
c,(2x-1)(x-3)(x+7)=0
Giúp mình với :)
d,(3-2x)(6x+4)(5-8x)=0
a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)
a) x^2 - 25 - 3 *(x - 5) =0
b) (3x + 1 )^2 = (2x - 5 )
c) 2x^2 - 7x + 6 = 0
giúp mình vs
*đừng giải tắt nha*
mình cần gấp
a. \(x^2-25-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5\right)-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b. \(\left(3x+1\right)^2=\left(2x-5\right)\\ \Leftrightarrow9x^2+6x+1=2x-5\\ \Leftrightarrow9x^2+6x-2x=-5-1\\ \Leftrightarrow9x^2+4x=-6\\ \Leftrightarrow x\left(9x+4\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\9x+4=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{10}{9}\end{matrix}\right.\)
c. \(2x^2-7x+6=0\\ \Leftrightarrow2x^2-7x=-6\\ \Leftrightarrow x\left(2x-7\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\dfrac{1}{2}\end{matrix}\right.\)
a, \(\left(x-5\right)\left(x+5\right)-3\left(x-5\right)=0\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\Leftrightarrow x=-2;x=5\)
b, bạn ktra lại đề, thường thường ngta hay cho 2 vế cùng bình phương
c, \(2x^2-7x+6=0\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\Leftrightarrow x=\dfrac{3}{2};x=2\)
\(\left(3x+1\right)^2=\left(2x-5\right)^2\)
\(\left[{}\begin{matrix}3x+1=2x-5\\3x+1=5-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\5x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\dfrac{4}{5}\end{matrix}\right.\)
giải pt:
a) x^4+4x³+6x²+4x+ căn(x²+2x+10)=2
b) x²=căn(x³-x²)+căn(x²-x)
c) căn(x-1)+căn(3-x) + x²+2x-3- √2=0
GIÚP MÌNH
a) PT \(\Leftrightarrow\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}=3\).
Ta có \(\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}\ge\sqrt{9}=3\).
Đẳng thức xảy ra khi và chỉ khi x = -1.
Vậy..
b) \(x^2=\sqrt{x^3-x^2}+\sqrt{x^2-x}\)
Đk: \(\left\{{}\begin{matrix}x^3-x^2\ge0\\x^2-x\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\ge1\end{matrix}\right.\)
Thay x=0 vào pt thấy thỏa mãn => x=0 là một nghiệm của pt
Xét \(x\ge1\)
Pt \(\Leftrightarrow x^4=\left(\sqrt{x^3-x^2}+\sqrt{x^2-x}\right)^2\le2\left(x^3-x\right)\) (Theo bđt bunhiacopxki)
\(\Leftrightarrow x^4\le2x\left(x^2-1\right)\le\left(x^2+1\right)\left(x^2-1\right)=x^4-1\)
\(\Leftrightarrow0\le-1\) (vô lí)
Vậy x=0
c) \(\sqrt{x-1}+\sqrt{3-x}+x^2+2x-3-\sqrt{2}=0\) (đk: \(1\le x\le3\))
Xét x-1=0 <=> x=1 thay vào pt thấy thỏa mãn => x=1 là một nghiệm của pt
Xét \(x\ne1\)
Pt\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-1}}+\dfrac{1-x}{\sqrt{3-x}+\sqrt{2}}+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\right)=0\) (1)
Xét \(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\)
Có \(\sqrt{3-x}+\sqrt{2}\ge\sqrt{2}\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{3-x}+\sqrt{2}}\ge-\dfrac{1}{\sqrt{2}}\)
Có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}>0\\x+3\ge4\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3>0-\dfrac{1}{\sqrt{2}}+4>0\)
Từ (1) => x-1=0 <=> x=1
Vậy pt có nghiệm duy nhất x=1
a)Giải bất phương trình
3(x+7)-2x+5>0 x=2/18 - x+3/8 < x-1/9 - x-4/24
b)Giải pt
3x+2+|x+5|=0
giúp mk với ;-;
a: 3(x+7)-2x+5>0
=>3x+21-2x+5>0
=>x+26>0
=>x>-26
Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)
=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)
=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)
=>\(4x+8-9x-27< 8x-8-3x+12\)
=>-5x-19<5x+4
=>-10x<23
=>\(x>-\dfrac{23}{10}\)
b: \(3x+2+\left|x+5\right|=0\left(1\right)\)
TH1: x>=-5
(1) trở thành: 3x+2+x+5=0
=>4x+7=0
=>\(x=-\dfrac{7}{4}\left(nhận\right)\)
TH2: x<-5
=>x+5<0
=>|x+5|=-x-5
Phương trình (1) sẽ trở thành:
\(3x+2-x-5=0\)
=>2x-3=0
=>2x=3
=>\(x=\dfrac{3}{2}\)
f(x)=-2x+6
f(x)=x2 -6x+5
f(x)=(x+3)(4-x)
f(x)=-x2 +4/x2-2x+1
bài 2 giải bpt sau
a (x-2)(x2+2x-3)>/=0
b x2-9/-x+5<0
giúp mình với ạ
\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)
Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)
Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)
Bảng xét dấu:
x \(-\infty\) -3 1 2 \(+\infty\)
\(x-2\) - | - | - 0 +
\(x^2+2x-3\) + 0 - 0 + | +
\(f\left(x\right)\) - 0 + 0 - 0 +
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)
\(b)\dfrac{x^2-9}{-x+5}< 0.\)
Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)
Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)
\(-x+5=0.\Leftrightarrow x=5.\)
Bảng xét dấu:
x \(-\infty\) -3 3 5 \(+\infty\)
\(x^2-9\) + 0 - 0 + | +
\(-x+5\) + | + | + 0 -
\(g\left(x\right)\) + 0 - 0 + || -
Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)