Những câu hỏi liên quan
NS
Xem chi tiết
NT
10 tháng 2 2022 lúc 21:50

Đặt 1/x = a ; 1/y = b 

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\\dfrac{10}{3}a+10b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10a+10b=\dfrac{5}{3}\\\dfrac{10}{3}a+10b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{20}{3}a=\dfrac{2}{3}\\b=\dfrac{1}{6}-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{10}\\b=\dfrac{1}{15}\end{matrix}\right.\)

Theo cách đặt x = 10 ; y = 15 

Bình luận (0)
H24
10 tháng 2 2022 lúc 21:53

ĐKXĐ:\(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{10}{3}.\dfrac{1}{x}+\dfrac{10}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{10}{3x}+\dfrac{10}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{3x}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{3x}-\dfrac{1}{y}=\dfrac{1}{6}-\dfrac{1}{10}\\\dfrac{1}{3x}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}=\dfrac{1}{15}\\\dfrac{1}{3x}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=30\\\dfrac{1}{3x}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\\dfrac{1}{3.10}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\\dfrac{1}{30}+\dfrac{1}{y}=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=15\end{matrix}\right.\)

 

 

Bình luận (0)
VD
Xem chi tiết
NT
2 tháng 7 2022 lúc 13:48

 

undefined

Bình luận (0)
VD
Xem chi tiết
NT
2 tháng 7 2022 lúc 13:45

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-1}-\dfrac{13}{y-2}=\dfrac{2}{5}-1=-\dfrac{3}{5}\\\dfrac{-8}{x-1}+\dfrac{30}{y-2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=\dfrac{-16}{5}\\y-2=-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{11}{5}\\y=-18\end{matrix}\right.\)

Bình luận (0)
DG
Xem chi tiết
H24
Xem chi tiết
H24
10 tháng 6 2021 lúc 11:12

`1/10x+1/15(11-x)=1`

`<=>1/10x+11/15-1/15x=1`

`<=>1/30x=1-11/15=4/15`

`<=>x=4/15*30=8`

Vậy `x=8`

Bình luận (0)
MY
10 tháng 6 2021 lúc 11:14

\(\dfrac{x}{10}+\dfrac{11-x}{15}=1< =>\dfrac{3x+22-2x}{30}=1\)

\(< =>\dfrac{3x+22-2x}{30}=1=>x+22=30< =>x=30-22< =>x=8\)

Bình luận (0)
PG
Xem chi tiết
TA
21 tháng 2 2018 lúc 22:08

1) \(\dfrac{120\left(x-10\right)}{x\left(x-10\right)}-\dfrac{120x}{x\left(x-10\right)}=1\)

=> \(\dfrac{120x-1200-120x}{x\left(x-10\right)}=1\)

=> x(x-10)=-1200

=> x2-10x+1200=0

=> (x2-10x+25)+1175=0

=> (x-5)2+1175>0

=> pt vo nghiem

Bình luận (0)
H24
Xem chi tiết
XO
29 tháng 12 2021 lúc 17:00

ĐKXĐ : x;y \(\ne0\)

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=-2\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{1}{x}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\x=\dfrac{1}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9+\dfrac{1}{y}=-1\\x=\dfrac{1}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{10}\\x=\dfrac{1}{9}\end{matrix}\right.\)

Bình luận (0)
MT
Xem chi tiết
TL
15 tháng 3 2023 lúc 19:20

ĐK: `x ne 2; y ne -1`

Đặt `{a=(1/(x-2)),(b=1/(y+1)):}`

Có: `{(2a+b=3),(4a-3b=1):}`

`<=>{(4a+2b=6),(4a-3b=1):}`

`<=>{(2a+b=3),(5b=5):}`

`<=>{(2a+1=3),(b=1):}`

`<=>{(a=1),(b=1):}`

``

`=>{(1/(x-2)=1),(1/(y+1)=1):}`

`<=>{(x-2=1),(y+1=1):}`

`<=>{(x=3),(y=0):}` (TM)

``

Vậy `(x;y)=(3;0)`.

 

Bình luận (0)
EO
Xem chi tiết
NL
4 tháng 2 2021 lúc 23:44

ĐKXĐ: ...

\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}=-\dfrac{1}{2}\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{u}{v}=-\dfrac{1}{2}\\u^2-2v=5\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}v=-2u\\u^2-2v=5\end{matrix}\right.\) \(\Rightarrow u^2+4u=5\)

\(\Leftrightarrow...\)

Bình luận (0)