Những câu hỏi liên quan
IU
Xem chi tiết
TC
Xem chi tiết
HP
28 tháng 3 2021 lúc 18:27

Gọi C là giao điểm của AB và \(\Delta\), O là giao điểm IM và AB

Gọi \(I=\left(m;n\right)\Rightarrow IM:x-3y-m+3n=0\)

\(M:\left\{{}\begin{matrix}x-3y-m+3n=0\\x+y=0\end{matrix}\right.\Rightarrow M=\left(\dfrac{m-3n}{4};\dfrac{3n-m}{4}\right)\)

\(\Rightarrow IM=\sqrt{\left(\dfrac{m-3n}{4}-m\right)^2+\left(\dfrac{3n-m}{4}-n\right)^2}=\dfrac{\sqrt{10}\left|m+n\right|}{4}\)

\(d\left(I,\Delta\right)=\dfrac{\left|m+n\right|}{\sqrt{2}}=2\sqrt{2}\Rightarrow\left|m+n\right|=4\left(1\right)\)

\(\Rightarrow IM=\sqrt{10}\)

Ta có \(IO.IM=IA^2=R^2\Rightarrow IO=\dfrac{IB^2}{IM}=\dfrac{4}{\sqrt{10}}\)

\(d\left(I;AB\right)=\dfrac{\left|3m+n-2\right|}{\sqrt{10}}=\dfrac{4}{\sqrt{10}}\Rightarrow\left|3m+n-2\right|=4\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\) tìm được tọa độ điểm I

Đến đây viết phương trình đường tròn tâm I có bán kính \(R=\sqrt{2}\) là được.

Bình luận (0)
DN
Xem chi tiết
DZ
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NL
14 tháng 5 2021 lúc 20:16

Đường tròn tâm \(I\left(2;1\right)\) bán kính \(R=\sqrt{5}\)

Do M thuộc \(\Delta\) nên tọa độ có dạng: \(M\left(m;-m-2\right)\Rightarrow\overrightarrow{IM}=\left(m-2;-m-3\right)\)

\(\Rightarrow IM^2=\left(m-2\right)^2+\left(m+3\right)^2=2m^2+2m+13\)

\(\Delta_vMIA=\Delta_vMIB\Rightarrow S_{IMAB}=2S_{MIA}=2.\dfrac{1}{2}AM.IA\)

\(\Leftrightarrow10=IA.\sqrt{IM^2-IA^2}=\sqrt{5}.\sqrt{2m^2+2m+13-5}\)

\(\Leftrightarrow2m^2+2m+8=20\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;-4\right)\\M\left(-3;1\right)\end{matrix}\right.\)

Bình luận (1)
JE
Xem chi tiết
NL
4 tháng 6 2020 lúc 16:40

Đường tròn tâm \(I\left(1;-1\right)\) bán kính \(R=2\)

\(\overrightarrow{IM}=\left(2;2\right)\Rightarrow IM=2\sqrt{2}\)

Tam giác MAI vuông tại A nên: \(AM^2=IM^2-R^2=4\Rightarrow AM=2=IA\)

\(\Rightarrow\Delta MAI\) vuông cân tại A \(\Rightarrow MAIB\) là hình vuông

\(\Rightarrow AB=IM=2\sqrt{2}\)

Bình luận (0)
NV
Xem chi tiết
VQ
Xem chi tiết