Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

H24

trong mặt phẳng với hệ toạn độ Oxy,cho đường thẳng delta:x+y+2=0 và đường tròn (C):x2+y2-4x-2y=0.GỌi I là tâm của (C), M là điểm thuộc delta.QUa M kẻ các tiếp tuyến MA và MB đến (C) (A và B là tiếp điểm).Tìm toạ độ điểm M,biết tứ giác MAIB có diện tích bằng 10

NL
14 tháng 5 2021 lúc 20:16

Đường tròn tâm \(I\left(2;1\right)\) bán kính \(R=\sqrt{5}\)

Do M thuộc \(\Delta\) nên tọa độ có dạng: \(M\left(m;-m-2\right)\Rightarrow\overrightarrow{IM}=\left(m-2;-m-3\right)\)

\(\Rightarrow IM^2=\left(m-2\right)^2+\left(m+3\right)^2=2m^2+2m+13\)

\(\Delta_vMIA=\Delta_vMIB\Rightarrow S_{IMAB}=2S_{MIA}=2.\dfrac{1}{2}AM.IA\)

\(\Leftrightarrow10=IA.\sqrt{IM^2-IA^2}=\sqrt{5}.\sqrt{2m^2+2m+13-5}\)

\(\Leftrightarrow2m^2+2m+8=20\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;-4\right)\\M\left(-3;1\right)\end{matrix}\right.\)

Bình luận (1)

Các câu hỏi tương tự
MT
Xem chi tiết
MT
Xem chi tiết
MT
Xem chi tiết
MT
Xem chi tiết
MT
Xem chi tiết
MT
Xem chi tiết
MT
Xem chi tiết
LH
Xem chi tiết
MT
Xem chi tiết