Đặt \(a=\sqrt{2};b=\sqrt[3]{2}\) . CM: \(\dfrac{1}{a-b}-\dfrac{1}{b}=a+b+\dfrac{a}{b}+\dfrac{b}{a}+1\)
A)\(\sqrt{25x-25}\)-\(\dfrac{15}{2}\)\(\sqrt{\dfrac{x-1}{9}}\)=6+\(\sqrt{x-1}\)
B) A=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{x\sqrt{x}}{\sqrt{x}+1}\)
a) Đặt điều kiện để biểu thức có nghĩa A
b) Rút gọn biểu thức A
A) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\)
\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=17\)
Vậy, x=17
A: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
=>5/2*căn x-1-căn x-1=6
=>3/2*căn x-1=6
=>căn x-1=4
=>x-1=16
=>x=17
B:
a: ĐKXĐ: x>=0; x<>1
b: Sửa đề: \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
=căn x-1+x-căn x+1
=x
B) a) \(ĐK:\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b)Sửa đề \(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+x-\sqrt{x}+1=x\)
Cho biểu thức A = x - 2\(\sqrt{x+2}\)
a) Đặt y = \(\sqrt{x+2}\). Hãy biểu thị A theo y.
b) Tìm giá trị nhỏ nhất của A.
a.
\(y=\sqrt{x+2}\Rightarrow y^2=\left(\sqrt{x+2}\right)^2\)
\(\Rightarrow y^2=x+2\)
\(\Rightarrow x=y^2-2\)
thay vào A ta có:\(A=x-2\sqrt{x+2}\)
\(\Rightarrow A=y^2-2y=y^2-2y-2\)
b.
\(A=x-2\sqrt{x+2}\)
Điều kiện:x+2≥0⇔x>-2
ta có:\(A=x-2\sqrt{x+2}\)
\(=\left(x+2\right)-2\sqrt{x+2}.1+1-3\)
\(=\left(\sqrt{x+12}-1\right)^2-3\)
vì \(\left(\sqrt{x+2}-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(\sqrt{x+2}-1\right)^2-3\ge-3\forall x\)
vậy GTNN của A là-3
a/ y=\(\sqrt{x+2}\)→\(y^2-2=x\)
⇒A=\(y^2-2-2y\)
b/ A=\(y^2-2y-2\)=\(\left(y^2-2y+1\right)-3\)=\(\left(y-1\right)^2-3\)≥ -3
⇒\(A_{min}=-3\)
dấu = xảy ra khi y=1⇒x= -1
đặt a=\(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\).Chứng minh rằng \(\frac{64}{\left(a^2-3\right)^3}-3a\)là số nguyên.
Ta có : a= \(\sqrt[3]{2-\sqrt{3}}\) + \(\sqrt[3]{2+\sqrt{3}}\)
Suy ra a^3 = 3a +4 => (a^2 -3)a=4
<=> \(\left(\frac{4}{a^2-3}\right)^3\)= a^3 <=>\(\frac{64}{\left(a^2-a\right)^3}\) -3a = 4
mà 4 nguyên suy ra đpcm
Ta có \(a=3\sqrt{2-\sqrt{3}}+\sqrt{3}^32_{\sqrt{3}}\)
Suy ra ta được 3= 3a + 4 => (a ngũ 2 - 3)a =4
Vậy kết quả khi tính đ là
=> (4 trên a2 - 3) trên 3 =a ngũ 3 <=> 64 trên a 2 - a3 - 3a =4
Đặt \(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\) CM: \(\dfrac{64}{\left(a^2-3\right)^3}-3a\) là số nguyên.
Bài 3:Cho biểu thức B=\(\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\).\(\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)(với a>0 và a khác 1)
a)rút gọn B
b)Đặt C=B.(\(a-\sqrt{a}+1\)).So sánh C và 1
a: Ta có: \(B=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)
\(=\dfrac{6\sqrt{a}-6+10-2\sqrt{a}}{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)
\(=\dfrac{4\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\cdot\dfrac{1}{4\sqrt{a}}\)
\(=\dfrac{1}{\sqrt{a}}\)
a) \(B=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right).\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{\left(a-1\right)\left(\sqrt{a}-1\right)}\right).\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{6\left(\sqrt{a}-1\right)+10-2\sqrt{a}}{\left(a-1\right)\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{4\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{1}{\sqrt{a}}\)
b) \(C=B.\left(a-\sqrt{a}+1\right)=\dfrac{a-\sqrt{a}+1}{\sqrt{a}}=\sqrt{a}-1+\dfrac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\dfrac{1}{\sqrt{a}}}-1=1\)(bất đẳng thức Cauchy cho 2 số dương)
đặt \(a=lim\dfrac{\sqrt{2n+1}}{\sqrt{n}+1}\). tìm giới hạn \(lim\dfrac{3-4an^2}{\left(an-2\right)^2}\)
\(a=\lim\dfrac{\sqrt{2n+1}}{\sqrt{n}+1}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{1+\dfrac{1}{\sqrt{n}}}=\sqrt{2}\)
\(\Rightarrow\lim\dfrac{3-4\sqrt{2}n^2}{\left(\sqrt{2}n-2\right)^2}=\lim\dfrac{\dfrac{3}{n^2}-4\sqrt{2}}{\left(\sqrt{2}-\dfrac{2}{n}\right)^2}=\dfrac{-4\sqrt{2}}{2}=-2\sqrt{2}\)
cho 2 biểu thức :
\(A=\dfrac{\sqrt{x}+2}{1-\sqrt{x}};B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
1, Rút gọn B
2, Đặt P=A.B
Tìm x ∈ Z .Tìm GTNN của P
1: \(B=\dfrac{2\sqrt{x}-x-2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{-x}{\left(\sqrt{x}-2\right)\cdot\sqrt{x}}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)
Rút gọn:
P = \(\frac{\sqrt{a-2}-2}{3}\cdot\left(\frac{\sqrt{a-2}}{3+\sqrt{a-2}}+\frac{a+7}{11-a}\right):\left(\frac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\frac{1}{\sqrt{a-2}}\right)\)
Mình nghĩ bài này đặt x = a - 2.Giúp mik vs mik trả tick đầy đủ
Đặt x=a-2,ta có : \(P=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\left(\frac{3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\frac{3}{3-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)
Đặt a=\(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}.\)Cmr: \(\frac{64}{\left(a^3-3\right)^3}-3a\)là số nguyên.
Chú ý tới đẳng thức : \(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)
\(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)
\(\Leftrightarrow a^3=2-\sqrt{3}+2+\sqrt{3}+3\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\cdot a\)
\(\Leftrightarrow a^3=4+3\sqrt[3]{4-3}\cdot a\)
\(\Leftrightarrow a^3=4+3a\)
\(\Leftrightarrow a^3-3a=4\)
Khi đó: \(\frac{64}{\left(a^3-3a\right)^3}-3=\frac{64}{4^3}-3=1-3=-2\)
Ta có đpcm.
p/s: Mình nghĩ đề sai và sửa luôn rồi, có gì bạn ib lại.