\(\frac{a;a+5}{25}=\frac{1}{5}\)
ai nhanh tay minh tich 5 lai cho nhe !
TÍNH:\(S=\frac{a}{a+b+c}+\frac{a+b+c}{a}+\frac{b}{a+b+c}+\frac{a+b+c}{b}+\frac{c}{a+b+c}+\frac{a+b+c}{c}-\frac{a}{b}-\frac{a}{c}-\frac{b}{a}-\frac{b}{c}-\frac{c}{a}-\frac{c}{b}\)
Ta có: S = (a/a+b+c +b/a+b+c +c/a+b+c) + (a+b+c /a + a+b+c /b + a+b+c /c) -a/b -a/c -b/a -b/c -c/a -c/b
= a+b+c/ a+b+c + 1+ b/a +c/a +a/b +1 +c/b +a/c +b/c +1 -a/b -a/c -b/a -b/c -c/a- c/b
= 1+1+1+1 (vì a+b+c khác 0)
= 4
Vậy S = 4
Bài này bạn chỉ cần tách đơn giản vậy thôi.Chúc bạn học tốt.
Rút gọn mỗi biểu thức sau:
a) \(\frac{{{a^{\frac{7}{3}}} - {a^{\frac{1}{3}}}}}{{{a^{\frac{4}{3}}} - {a^{\frac{1}{3}}}}} - \frac{{{a^{\frac{5}{3}}} - {a^{ - \frac{1}{3}}}}}{{{a^{\frac{2}{3}}} + {a^{ - \frac{1}{3}}}}}\,\,\,(a > 0;a \ne 1)\)
b) \(\frac{{{{\left( {\sqrt[4]{{{a^3}{b^2}}}} \right)}^4}}}{{\sqrt[4]{{\sqrt {{a^{12}}{b^6}} }}}}\,\,\,(a > 0;b > 0)\)
a) \(A=\left(1+\frac{b^2+c^2-a^2}{2bc}\right).\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}.\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
b) \(B=\frac{\frac{3a}{a+b}}{\frac{2a}{a^2-2ab+b^2}}\)
c) \(C=\frac{\frac{a}{b}+\frac{b}{a}}{\frac{a}{b}-\frac{b}{a}}:\frac{\frac{a^2}{b^2}-\frac{b^2}{a^2}}{\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)
a) \(A=\left(1+\frac{b^2+c^2-a^2}{2bc}\right).\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}.\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
\(=\frac{2bc+b^2+c^2-a^2}{2bc}.\frac{\frac{a+b+c}{b+c}}{\frac{b+c-a}{b+c}}.\frac{b^2+c^2-b^2+2bc-c^2}{a+b+c}\)
\(=\frac{\left(b+c+a\right)\left(b+c-a\right)}{2bc}.\frac{a+b+c}{b+c-a}.\frac{2bc}{a+b+c}\)
\(=a+b+c\)
b) \(B=\frac{\frac{3a}{a+b}}{\frac{2a}{a^2-2ab+b^2}}\)\(=\frac{3a}{a+b}.\frac{\left(a-b\right)^2}{2a}=\frac{3\left(a-b\right)^2}{2\left(a+b\right)}\)
c) \(C=\frac{\frac{a}{b}+\frac{b}{a}}{\frac{a}{b}-\frac{b}{a}}:\frac{\frac{a^2}{b^2}-\frac{b^2}{a^2}}{\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)
\(=\frac{\frac{a^2+b^2}{ab}}{\frac{a^2-b^2}{ab}}:\frac{\frac{a^4-b^4}{a^2b^2}}{\frac{\left(a+b\right)^2}{a^2b^2}}\)
\(=\frac{a^2+b^2}{a^2-b^2}.\frac{\left(a+b\right)^2}{a^4-b^4}\)
\(=\frac{\left(a^2+b^2\right)\left(a+b\right)^2}{\left(a+b\right)\left(a-b\right)\left(a^2+b^2\right)\left(a+b\right)\left(a-b\right)}\)
\(=\frac{1}{\left(a-b\right)^2}\)
áp dụng cô si ta có:
+)\(\frac{a^5}{b^3}+\frac{a^3}{b}\ge\frac{2a^4}{b^2};\frac{b^5}{c^3}+\frac{b^3}{c}\ge\frac{2b^4}{c^2};\frac{c^5}{a^3}+\frac{c^3}{a}\ge\frac{2c^4}{a^2}\)
\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge2\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)-\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\)
+)\(\frac{a^4}{b^2}+a^2\ge\frac{2a^3}{b};\frac{b^4}{c^2}+b^2\ge\frac{2b^3}{c};\frac{c^4}{a^2}+c^2\ge\frac{2C^3}{a}\)
\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)-\left(a^2+b^2+c^2\right)\)
+)\(\frac{a^3}{b}+ab\ge2a^2;\frac{b^3}{c}+bc\ge2b^2;\frac{c^3}{a}+ca\ge2c^2\)
\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-a^2-b^2-c^2\right)\ge\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)+\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}-\frac{a^3}{b}-\frac{b^3}{c}-\frac{c^3}{a}\right)\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Rút gọn :
\(D=\left(\frac{a-b}{a^{\frac{3}{4}}+a^{\frac{1}{2}}.b^{\frac{1}{4}}}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right):\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{a}{b}}\)
\(D=\left(\frac{a-b}{a^{\frac{3}{4}}+a^{\frac{1}{2}}.b^{\frac{1}{4}}}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right):\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{a}{b}}\)
\(=\left[\frac{a-b}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right]:\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{b}{a}}\)
\(=\frac{a-b-a+a^{\frac{1}{2}}.b^{\frac{1}{2}}}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}.\frac{1}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}=\frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}}\frac{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}\sqrt{\frac{a}{b}}.\sqrt{\frac{a}{b}}=1\)
\(\frac{a^2b+bc^2-1}{ac\left(a+c\right)}+\frac{b^2c+ca^2-1}{ab\left(a+b\right)}+\frac{c^2a+ab^2-1}{bc\left(b+c\right)}\)
\(=\frac{a^2b^2+b^2c^2-b}{a+c}+\frac{b^2c^2+c^2a^2-c}{a+b}+\frac{c^2a^2+a^2b^2-a}{b+c}\)
\(=\frac{\frac{1}{a^2}-\frac{1}{ac}+\frac{1}{c^2}}{a+c}+\frac{\frac{1}{b^2}-\frac{1}{ab}+\frac{1}{a^2}}{a+b}+\frac{\frac{1}{c^2}-\frac{1}{bc}+\frac{1}{b^2}}{b+c}\ge\frac{1}{ac\left(a+c\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ab\left(b+a\right)}\)
\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Rút gọn các biểu thức sau \(\left( {a > 0,b > 0} \right)\):
a) \({a^{\frac{1}{3}}}{a^{\frac{1}{2}}}{a^{\frac{7}{6}}}\);
b) \({a^{\frac{2}{3}}}{a^{\frac{1}{4}}}:{a^{\frac{1}{6}}}\);
c) \(\left( {\frac{3}{2}{a^{ - \frac{3}{2}}}{b^{ - \frac{1}{2}}}} \right)\left( { - \frac{1}{3}{a^{\frac{1}{2}}}{b^{\frac{3}{2}}}} \right)\).
a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)
b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)
c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)
\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)
1)Rút gọn biểu thức
A=\(\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^2}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
B=\(\frac{1}{a^2+a}+\frac{1}{a^2+3a+2}+\frac{1}{a^2+5a+6}\)
2)Cho\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\).CMR \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)
Bài 1:
\(A=\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{a+b+a-b}{(a-b)(a+b)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=(2a).\frac{a^2+b^2+a^2-b^2}{(a^2-b^2)(a^2+b^2)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=4a^3.\frac{a^4+b^4+a^4-b^4}{(a^4-b^4)(a^4+b^4)}+\frac{8a^7}{a^8+b^8}=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}=8a^7.\frac{a^8+b^8+a^8-b^8}{(a^8-b^8)(a^8+b^8)}\)
\(=\frac{16a^{15}}{a^{16}-b^{16}}\)
--------------
\(B=\frac{1}{a(a+1)}+\frac{1}{(a+1)(a+2)}+\frac{1}{(a+2)(a+3)}=\frac{(a+1)-a}{a(a+1)}+\frac{(a+2)-(a+1)}{(a+1)(a+2)}+\frac{(a+3)-(a+2)}{(a+2)(a+3)}\)
\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}\)
\(=\frac{1}{a}-\frac{1}{a+3}=\frac{3}{a(a+3)}\)
Bài 2:
Bạn tham khảo lời giải tương tự tại link sau:
Câu hỏi của Law Trafargal - Toán lớp 8 | Học trực tuyến