Những câu hỏi liên quan
H24
Xem chi tiết
NT
22 tháng 10 2023 lúc 8:06

1: Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

=>AEDB là tứ giác nội tiếp đường tròn đường kính AB

Tâm I là trung điểm của AB

Bán kính là \(IA=\dfrac{AB}{2}\)

2: Xét ΔDBH vuông tại D và ΔDAC vuông tại D có

\(\widehat{DBH}=\widehat{DAC}\left(=90^0-\widehat{ACB}\right)\)

Do đó: ΔDBH đồng dạng với ΔDAC

=>DB/DA=DH/DC

=>\(DB\cdot DC=DA\cdot DH\)

3: ABDE là tứ giác nội tiếp

=>\(\widehat{ADE}=\widehat{ABE}=\widehat{ABN}\)

Xét (O) có

\(\widehat{ABN}\) là góc nội tiếp chắn cung AN

\(\widehat{AMN}\) là góc nội tiếp chắn cung AN

Do đó: \(\widehat{ABN}=\widehat{AMN}\)

=>\(\widehat{HDE}=\widehat{HMN}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên DE//MN

Bình luận (0)
ND
Xem chi tiết
DL
27 tháng 4 2023 lúc 17:26

a.

Xét tứ giác CDHE có:

\(\widehat{CDH}+\widehat{CEH}=90^o+90^o=180^o\)

Do đó: tứ giác CDHE là tứ giác nội tiếp.

b. Gọi I là trung điểm của HC

=> I là tâm đường tròn ngoại tiếp tam giác DEC

Có: EM là trung tuyến tam giác vuông BEA

=> \(\widehat{MEB}=\widehat{MBE}\)

EI là trung tuyến tam giác vuông HEC

=> \(\widehat{IEH}=\widehat{IHE}\)

Mà: \(\widehat{MBE}=\widehat{ECH}\) (cùng phụ \(\widehat{BAC}\) )

=> \(\widehat{MEI}=\widehat{MEH}+\widehat{IEH}=\widehat{ECH}+\widehat{EHI}=90^o\)

=> ME vuông góc EI hay ME là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE.

c. Xét tam giác vuông BDH và tam giác vuông ADC có:

\(\widehat{BHD}=\widehat{ACD}\) (cùng phụ \(\widehat{HBD}\) )

=> \(\Delta BDH\sim\Delta ADC\)

=> \(\dfrac{BD}{DA}=\dfrac{DH}{DC}\)

<=> \(DH.DA=BD.DC\le\left(\dfrac{BD+DC}{2}\right)^2=\dfrac{BC^2}{4}=\dfrac{3R^2}{4}\)

\(DH.DA\) max \(=\dfrac{3R^2}{4}\)  khi và chỉ khi BD = DC <=> D là trung điểm của BC hay A là điểm chính giữa cung lớn BC.

T.Lam

Bình luận (0)
TH
Xem chi tiết
ND
Xem chi tiết
DH
Xem chi tiết
DH
9 tháng 5 2021 lúc 18:28

giúp mình câu b với các bạn ơi

 

Bình luận (0)
TA
Xem chi tiết
TT
Xem chi tiết
VD
Xem chi tiết
AQ
Xem chi tiết
NM
13 tháng 12 2021 lúc 21:31

\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)

\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)

Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)

Do đó \(\widehat{BAH}=\widehat{OAC}\)

Bình luận (0)
XH
Xem chi tiết
NT
28 tháng 4 2023 lúc 22:46

a: góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

góc BFC=góc BEC=90 dộ

=>BFEC nội tiếp

b: góc FEB=góc BAD

góc DEB=góc FCB

mà góc BAD=góc FCB

nên góc FEB=góc DEB

=>EB là phân giác của góc FED

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc OA

=>OA vuông góc IK

Bình luận (0)