Ôn tập góc với đường tròn

ND

Cho ΔABC có 3 góc nhọn nội tiếp (O ;R) các đường cao AD,BE cắt nhau tại H , kéo dài BE cắt (O) tại F 

a, cm : tg CDHE nội tiếp 

b, Gọi M là trung điểm của AB 

cm : ME là tiếp tuyến của đường tròn ngoại tiếp ΔCDE

c, Cho BC cố định và BC = R \(\sqrt{3}\)

Xác định vị trí của A trên (O) để DH.DA đạt GTLN

DL
27 tháng 4 2023 lúc 17:26

a.

Xét tứ giác CDHE có:

\(\widehat{CDH}+\widehat{CEH}=90^o+90^o=180^o\)

Do đó: tứ giác CDHE là tứ giác nội tiếp.

b. Gọi I là trung điểm của HC

=> I là tâm đường tròn ngoại tiếp tam giác DEC

Có: EM là trung tuyến tam giác vuông BEA

=> \(\widehat{MEB}=\widehat{MBE}\)

EI là trung tuyến tam giác vuông HEC

=> \(\widehat{IEH}=\widehat{IHE}\)

Mà: \(\widehat{MBE}=\widehat{ECH}\) (cùng phụ \(\widehat{BAC}\) )

=> \(\widehat{MEI}=\widehat{MEH}+\widehat{IEH}=\widehat{ECH}+\widehat{EHI}=90^o\)

=> ME vuông góc EI hay ME là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE.

c. Xét tam giác vuông BDH và tam giác vuông ADC có:

\(\widehat{BHD}=\widehat{ACD}\) (cùng phụ \(\widehat{HBD}\) )

=> \(\Delta BDH\sim\Delta ADC\)

=> \(\dfrac{BD}{DA}=\dfrac{DH}{DC}\)

<=> \(DH.DA=BD.DC\le\left(\dfrac{BD+DC}{2}\right)^2=\dfrac{BC^2}{4}=\dfrac{3R^2}{4}\)

\(DH.DA\) max \(=\dfrac{3R^2}{4}\)  khi và chỉ khi BD = DC <=> D là trung điểm của BC hay A là điểm chính giữa cung lớn BC.

T.Lam

Bình luận (0)

Các câu hỏi tương tự
PQ
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
NQ
Xem chi tiết
PN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết