\(\Delta ABC\) nhọn có : \(AH\perp BC;BI\perp AC;CK\perp AB\).Chứng minh rằng: \(S_{HIK}=\left(1-\cos^2A-\cos^2B-\cos^2C\right)\cdot S_{ABC}\)
Cho \(\Delta ABC\) (\(AB< AC\)) có ba góc nhọn, kẻ đường cao \(AH\) (\(H\) thuộc \(BC\)). Từ \(H\) kẻ \(HD\perp AB\) và \(HE\perp AC\) ( \(D\) thuộc \(AB\), \(E\) thuộc \(AC\) )
a) Cm: \(\Delta ADH\) đồng dạng \(AHB\) và \(\Delta AEH\) đồng dạng \(\Delta AHC\)
b) Cm: \(AD.AB=AE.AC\)
C) Tia phân giác góc \(BAC\) cắt \(DE\), \(BC\) lần lượt tại \(M,N\). Cm: \(\dfrac{MD}{ME}=\dfrac{NC}{NB}\)
Cho \(\Delta ABC\) nhọn (AB < AC). Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia cX song song với AB. Trên tia Cx, lấy điểm D sao cho CD = AB.
a) Chứng minh \(\Delta ABC=\Delta DCB\)
b) Chứng minh AC // BD\
c) Kẻ \(AH\perp BC\) tại H, \(DC\perp BK\) tại K. Chứng minh AH = DK.
d) Gọi I là trung điểm của BC. Chứng minh I là trung điểm của AD.
Cho ΔABC nhọn, AB < AC , eb = EC ( E ∈ BC ) . Lấy D thuộc tia AE , AH ⊥ EC ( H ∈ BC ) . Lấy Kthuộc tia AH . sao cho H là trung điểm của AK .
Chứng minh DK ⊥ AH
Cho Δ ABC nhọn. Dựng ra phía ngoài của Δ ABC các Δ vuông cân tại A; góc ABD = góc ACE. C/m:
a) góc DAC = góc BAE
b) DC = DE
c) DC ⊥ BE
d) Kẻ AH ⊥ BC, DM ⊥ AH, EN ⊥ AH. C/m DM = AH; EN = AH, MN cắt DE tại trung điểm của mỗi đường
Cho tam giác ABC nhọn có AB = AC.Gọi H là trung điểm của BC
a) Chứng minh \(\Delta\)AHB = \(\Delta\)AHC và AH \(\perp\) BC
b) Trên tia đối của tia HA lấy điểm M sao cho HM = HA.Chứng minh \(\Delta\)AHB = \(\Delta\)MHC và MC // AB
\(a,\left\{{}\begin{matrix}AB=AC\\BH=HC\\AH\text{ chung}\end{matrix}\right.\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\\ \Rightarrow\widehat{AHB}=\widehat{AHC}\\ \text{Mà }\widehat{AHB}+\widehat{AHC}=180^0\\ \Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\\ \Rightarrow AH\perp BC\\ b,\left\{{}\begin{matrix}HM=HA\\\widehat{AHB}=\widehat{MHC}\left(đđ\right)\\BH=HC\end{matrix}\right.\Rightarrow\Delta AHB=\Delta MHC\left(c.g.c\right)\\ \Rightarrow\widehat{HBA}=\widehat{HCM}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}MC\)
Cho \(\Delta\)ABC nhọn . Kẻ AH\(\perp\)BC ( H\(\varepsilon\)BC ) . Biết AB = 13cm , AH = 12cm và HC = 16cm . Tính chu vi \(\Delta\)ABC
Chứng minh :
Xét △AHB vuông tại H ( gt ) có :
\(AB^2=AH^2+BH^2\) ( định lí Py - ta - go )
\(\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=13^2-12^2\)
\(\Rightarrow BH^2=25\)
\(\Rightarrow BH=5\left(cm\right)\left(BH>0\right)\)
Có : H ϵ BC ⇒ H nằm giữa B và C
BH + HC = BC
⇒ BC = 5 + 16 = 21 ( cm )
Xét △AHC vuông tại H ( gt ) có:
\(AC^2=AH^2+HC^2\) ( đ/l Py - ta - go )
\(\Rightarrow AC^2=12^2+16^2\)
\(\Rightarrow AC^2=400\)
\(\Rightarrow AC=20\left(cm\right)\left(AC>0\right)\)
Chu vi tam giác ABC là : 13 + 21 + 20 = 54 ( cm )
Vậy chu vi tam giác ABC là 54 cm
✽ △ ABC vuông tại H
Áp dụng định lý Pitago:
→AB2+ BH2= AB2
→122+BH2=132
→ BH2= 132-122
→BH2=25
→BH=5cm
✽ Vì △ AHC vuông tại H
Áp dụng định lý Pitago:
→ AH2+ HC2=AC2
→ 122+162=AC2
→AC2=122+162
→AC2=400 → AC=20 Vì H nằm giữa B,C → BH+HC=BC →5+ 16=BC →BC=5+16 →BC= 21cm ⇒ Chu vi △ ABC: AB+ AC+ BC= △ABC → 13+20+21=△ABC → △ABC=13+20+21 →△ABC= 54cm (đpcm)
Cho ΔABC nhọn có AH ⊥ BC tại H a) Chứng minh AC > AH, AB > AH b) Chứng minh AH < 1/2.(AB + AC)
a: Ta có: ΔAHC vuông tại H
nen AC>AH
Ta co: ΔAHB vuông tạiH
nên AB>AH
b: AB+AC>HA+AH=2HA
nên AH<1/2(AB+AC)
Cho ΔABC nhọn (AB<AC). Hai đường cao BD và CE cắt nhau tại H.
a)Chứng minh: AH⊥BC
bạn áp dụng trực tâm của tam giác là ra
\(\Delta\) ABC có 3 góc nhọn. AH \(\perp\) BC tại H. CM:
1. AC > AH.
2. AB > AH.