Những câu hỏi liên quan
KL
Xem chi tiết
H24
Xem chi tiết
HP
5 tháng 10 2021 lúc 7:18

1.

Hàm số xác định khi: \(1-2sinx\ne0\Leftrightarrow sinx\ne\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Bình luận (0)
HP
5 tháng 10 2021 lúc 7:26

2.

Đặt \(t=cosx\left(t\in\left[-1;1\right]\right)\)

Hàm số xác định trên R khi:

\(m-1+2cosx\ge0\forall x\in R\)

\(\Leftrightarrow m\ge f\left(t\right)=1-2t\forall x\in R\)

\(\Leftrightarrow m\ge maxf\left(t\right)=f\left(-1\right)=3\)

Vậy \(m\ge3\)

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 10 2019 lúc 13:05

TXĐ: D = R

 

 

Bình luận (0)
HV
Xem chi tiết
NH
28 tháng 4 2023 lúc 23:16

đồng biến khi m-1>0 

=>m>1

Bình luận (0)
NT
28 tháng 4 2023 lúc 23:16

Để hàm số đồng biến thì m-1>0

=>m>1

Bình luận (0)
AM
Xem chi tiết
NT
19 tháng 12 2021 lúc 9:27

b: Để hàm số đồng biến thì m-1>0

hay m>1

Bình luận (2)
PB
Xem chi tiết
CT
14 tháng 4 2017 lúc 5:11

Chọn C

Bình luận (0)
LB
Xem chi tiết
NL
8 tháng 2 2021 lúc 12:29

a, ĐKXĐ để hàm được xác định : \(3-m\ne0\)

\(\Leftrightarrow m\ne3\)

b, - Với x < 0 để hàm số đồng biến thì : \(3-m< 0\)

\(\Leftrightarrow m>3\)

Vậy ...

c, - Để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0 

\(\Leftrightarrow a>0\)

\(\Leftrightarrow3-m>0\)

\(\Leftrightarrow m< 3\)

Vậy ...

 

Bình luận (0)
NT
8 tháng 2 2021 lúc 12:32

a) Để hàm số \(y=\left(3-m\right)x^2\) được xác định thì \(3-m\ne0\)

hay \(m\ne3\)

b) Để hàm số \(y=\left(3-m\right)x^2\) đồng biến với mọi x<0 thì \(3-m< 0\)

\(\Leftrightarrow m>3\)

c) Để y=0 là giá trị nhỏ nhất của hàm số tại x=0 thì 3-m>0

hay m<3

Bình luận (0)
NA
Xem chi tiết
NT
22 tháng 10 2021 lúc 23:31

c: Để (d) vuông góc với (Δ) thì \(\left(6m+1\right)\cdot6=-1\)

\(\Leftrightarrow6m+1=-\dfrac{1}{6}\)

hay \(m=-\dfrac{7}{36}\)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 4 2019 lúc 7:37

Bình luận (0)
DH
Xem chi tiết
NL
23 tháng 10 2021 lúc 21:06

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

Bình luận (0)