Bài 7. Trong mặt phẳng Oxy, cho A(1;-2), B(2;3), C(-2;1) và D(2;-3m).
Tìm tọa độ giao điểm của AB với đường thẳng d: y = 3x-9.
Bài 1 : tìm m để 3 điểm A( 2 ; -1 ) , B ( 1 ; 1 ) , C ( 3 ; m+1 ) trong mặt phẳng Oxy thẳng hàng .
Bài 2 : trong mặt phẳng Oxy cho A ( 1; 2 ) , B ( 3 ; 4 ) . tìm điểm M thuộc Ox sao cho MA + MB đạt giá trị nhỏ nhất .
1.Trong mặt phẳng tọa độ Oxy cho hình bình hành ABCD với A (- 6;1); B (2;2) C (1;5) tọa độ đỉnh D là:
A. (5;2)
B. (-7;4)
C. (5;4)
D. (7;-4)
2.Trong mặt phẳng tọa độ Oxy cho tam giác ABC với A (- 1;3); B (2;1) C (5;5) tọa độ đỉnh D là của hình bình hành ABCD:
A. (0;4)
B. (8;1)
C. (8;3)
D. (-8;3)
Hướng dẫn em cách làm với ạ. Em cảm ơn nhiều.
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
Trong mặt phẳng tọa độ Oxy, cho A(2; 1), B(3; -2), C(5; 7). Giá trị của A B → . A C → là
A. 15
B. 21
C. -15
D. -21
A B → = 1 ; − 3 , A C → = 3 ; 6 ⇒ A B → . A C → = 1.3 + − 3 .6 = − 15
ĐÁP ÁN C
(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\), \(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?
(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\), \(\overrightarrow{b}=\left(4;1\right)\). tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?
(3) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{u}=\left(-5;4\right)\), \(\overrightarrow{v}=-3\overrightarrow{j}\). tọa độ của vecto \(\overrightarrow{a}=2\overrightarrow{u}-5\overrightarrow{v}\) là?
(4) trong mặt phẳng tọa độ Oxy, cho hai điểm A (1;1), B (4;-7) và \(\overrightarrow{OM}=2\overrightarrow{OA}-5\overrightarrow{OB}\). tổng hoành độ và tung độ của điểm M là?
giúp mk vs ạ mk cần gấp thank
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
Trong mặt phẳng tọa độ Oxy, cho hai vectơ a → = − 3 ; 2 và b → = − 1 ; − 7 . Tìm tọa độ vectơ c → biết c → . a → = 9 và c → . b → = − 20.
A. c → = − 1 ; − 3 .
B. c → = − 1 ; 3 .
C. c → = 1 ; − 3 .
D. c → = 1 ; 3 .
Gọi c → = x ; y .
Ta có c → . a → = 9 c → . b → = − 20 ⇔ − 3 x + 2 y = 9 − x − 7 y = − 20 ⇔ x = − 1 y = 3 ⇒ c → = − 1 ; 3 .
Chọn B
Trong mặt phẳng tọa độ Oxy, cho hai vectơ a → = − 3 ; 2 và b → = − 1 ; − 7 . Tìm tọa độ vectơ c → biết c → . a → = 9 và c → . b → = − 20.
A. c → = − 1 ; − 3 .
B. c → = − 1 ; 3 .
C. c → = 1 ; − 3 .
D. c → = 1 ; 3 .
Gọi c → = x ; y .
Ta có c → . a → = 9 c → . b → = − 20 ⇔ − 3 x + 2 y = 9 − x − 7 y = − 20 ⇔ x = − 1 y = 3 ⇒ c → = − 1 ; 3 .
Chọn B.
2. Trong mặt toạ độ Oxy , cho đg thẳng d x =3 -2t ; y = 1+3t. Một vectơ chỉ phương của đg thẳng d là?
7. Trong mặt phẳng toạ độ Oxy , viết pt tham số của đg thẳng d đi qua điểm A(1;-4) có 1 vectơ chỉ phương u = (-4;9)
2.
Đường thẳng d có 1 vtcp là \(\left(-2;3\right)\) hoặc \(\left(2;-3\right)\) cũng được
7.
Phương trình tham số của d: \(\left\{{}\begin{matrix}x=1-4t\\y=-4+9t\end{matrix}\right.\)
2. VTCP: (-2;3)
7. \(d\left\{{}\begin{matrix}QuaA\left(1;-4\right)\\\overrightarrow{u}=\left(-4;9\right)\end{matrix}\right.\)=> PTTS \(\left\{{}\begin{matrix}x=1-4t\\y=-4+9t\end{matrix}\right.\)
Trong mặt phẳng tọa độ Oxy, cho bốn điểm A( 7; -3); B( 8; 4); C ( 1; 5) và D(0; -2). Khẳng định nào sau đây đúng?
A. A C → ⊥ C B → .
B. Tam giác ABC đều.
C. Tứ giác ABCD là hình vuông.
D. Tứ giác ABCD không nội tiếp đường tròn.
Ta có
A B → = 1 ; 7 ⇒ A B = 1 2 + 7 2 = 5 2 B C → = − 7 ; 1 ⇒ B C = 5 2 C D → = − 1 ; − 7 ⇒ C D = 5 2 D A → = 7 ; − 1 ⇒ D A = 5 2 ⇒ A B = B C = C D = D A = 5 2 .
Lại có: A B → . B C → = 1 − 7 + 7.1 = 0 nên A B ⊥ B C .
Từ đó suy ra ABCD là hình vuông.
Chọn C.
Trong mặt phẳng Oxy, cho ∆ A B C có đỉnh A ( 3;-7 ), trực tâm H ( 3;-1 ), tâm đường tròn ngoại tiếp I ( -2;0 ). Xác định tung độ đỉnh C
A. y C = 1
B. y C = 3
C. y C = -3
D. y C = -1
Gọi B’ là điểm đối xứng với B qua điểm I. Rõ ràng tứ giác AHCB’ là hình bình hành, cho nên B ' C = A H , tức là C = T A H B '
Do B ' ∈ y là đường tròn ngoại tiếp ∆ A B C nên B = ( y' ) = T A H y ⇒ C = y ∩ y '
Dễ dàng lập được phương trình của các đường tròn (y) và (y') lần lượt như sau
x + 2 2 + y 2 = 74 x + 2 2 + y + 6 2 = 74
Tọa độ điểm C là nghiệm của hệ phương trình
x + 2 2 + y 2 = 74 x + 2 2 + y + 6 2 = 74 ⇒ x = - ± 65 y = - 3
Do đó y C = -3
Đáp án C