Những câu hỏi liên quan
PD
Xem chi tiết
DT
Xem chi tiết
JP
5 tháng 7 2021 lúc 19:49

Do  a < b < c < d < m < n 
=> 2c < c + d 
m< n => 2m < m+ n 
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n) 
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
NM
4 tháng 9 2021 lúc 16:41

Bình luận (3)
LD
Xem chi tiết
NC
7 tháng 2 2020 lúc 14:53

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
TT
12 tháng 3 2022 lúc 17:01

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
37
Xem chi tiết
NA
26 tháng 1 2022 lúc 9:31

Do  a < b < c < d < m < n 
=> 2c < c + d 
m< n => 2m < m+ n 
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n) 
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)

Bình luận (3)
H24
Xem chi tiết
Y
27 tháng 5 2019 lúc 20:47

Theo BĐT AM-GM :

\(M=a^2+b^2+c^2+d^2+ab+ac+bc+bd+dc+da\)

\(\ge10\sqrt[10]{\left(abcd\right)^5}=10\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=1\)

Bình luận (2)
TD
Xem chi tiết
SG
31 tháng 3 2017 lúc 11:30

|a-b|+|b-c|+|c+d|+|d+a| cùng tính chẵn lẻ với

|(a-b)+(b-c)+(c+d)-(d+a)| = |0| = 0

2017 lẻ => không tìm được giá trị a;b;c;d thỏa mãn

Bình luận (0)
OO
Xem chi tiết
TD
1 tháng 8 2017 lúc 21:41

Ta có :

a < b \(\Rightarrow\)2a < a + b \(\Rightarrow\)\(\frac{a}{a+b}< \frac{1}{2}\)

c < d \(\Rightarrow\)2c < c + d \(\Rightarrow\)\(\frac{c}{c+d}< \frac{1}{2}\)

m < n \(\Rightarrow\)2m < m + n \(\Rightarrow\)\(\frac{m}{m+n}< \frac{1}{2}\)

\(\Rightarrow\)2a + 2c + 2m < ( a + b ) + ( c + d ) + ( m + n ) 

\(\Rightarrow\)2 . (a  + c + nm ) < a + b + c + d + m + n

\(\Rightarrow\)\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

Bình luận (0)
GJ
1 tháng 8 2017 lúc 21:42

\(a< b\Rightarrow2a< a+b\)

\(c< d\Rightarrow2c< c+d\)

\(m< n\Rightarrow2m< m+n\)

\(\Rightarrow2a+2c+2m< a+b+c+d+m+n\)

\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(\text{đ}pcm\right)\)

Bình luận (0)
VV
1 tháng 8 2017 lúc 21:45

Ta thấy:
\(\hept{\begin{cases}a< b\\c< d\\m< n\end{cases}\Rightarrow a+c+m< b+d+n}\)
\(\Rightarrow\left(a+c+m\right)+\left(a+c+m\right)< \left(a+c+m\right)+\left(b+d+n\right)\)
\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)
hay \(a+b+c+d+m+n>2\left(a+c+m\right)\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{a+c+m}{2\left(a+c+m\right)}\) ( do các tử và các mẫu đều dương )
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\) ( đpcm )

Bình luận (0)
Xem chi tiết
GL
14 tháng 2 2020 lúc 23:31

Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)

Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)

Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)

Bình luận (1)
 Khách vãng lai đã xóa
NT
5 tháng 3 2020 lúc 11:21

Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)

Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)

Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)

Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa