Tìm b, c biết: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\) và a + b + c không bằng 0; a = 2014
Cho a,b,c không âm, không có 2 số nào đồng thời bằng 0. Tìm GTNN của \(Q=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\sqrt[]{\dfrac{2c}{a+b}}\)
- Với \(ab=0\), vai trò như nhau, giả sử
\(b=0\Rightarrow Q=\dfrac{a}{c}+\sqrt{\dfrac{2c}{a}}=\dfrac{a}{c}+\dfrac{1}{2}\sqrt{\dfrac{2c}{a}}+\dfrac{1}{2}\sqrt{\dfrac{2c}{a}}\ge3\sqrt[3]{\dfrac{1}{2}}\)
- Với \(ab>0\)
\(Q=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{ab+bc}+\sqrt{\dfrac{2c}{a+b}}\ge\dfrac{\left(a+b\right)^2}{2ab+c\left(a+b\right)}+\sqrt{\dfrac{2c}{a+b}}\)
\(\ge\dfrac{\left(a+b\right)^2}{\dfrac{\left(a+b\right)^2}{2}+c\left(a+b\right)}+\sqrt{\dfrac{2c}{a+b}}=\dfrac{2}{\dfrac{2c}{a+b}+1}+\sqrt{\dfrac{2c}{a+b}}\)
Đặt \(\sqrt{\dfrac{2c}{a+b}}=x>0\)
\(\Rightarrow Q\ge\dfrac{2}{x^2+1}+x=\dfrac{x^3+x+2}{x^2+1}=\dfrac{x^3-2x^2+x}{x^2+1}+2=\dfrac{x\left(x-1\right)^2}{x^2+1}+2\ge2\)
\(\Rightarrow Q_{min}=2\) khi \(x=\left\{0;1\right\}\Rightarrow\left[{}\begin{matrix}c=0;a=b\\a=b=c\end{matrix}\right.\)
1. Cho a,b,c không đồng thời bằng 0 và a+b+c=0. Rút gọn:
\(N=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
2. CMR: Nếu a+b+c=2x thì:
\(\dfrac{1}{x-a}+\dfrac{1}{x-b}+\dfrac{1}{x-c}-\dfrac{1}{x}=\dfrac{abc}{x\left(x-a\right)\left(x-b\right)\left(x-c\right)}\)
\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)
Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)
\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
1.tìm số xyz biết \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25},vàx-y+z=4\)
2. biết \(a^2+ab+\dfrac{b^2}{3}=25;c^2+\dfrac{b^2}{3}=9;a^2+ac+c^2=16\) và a≠ 0; c ≠ 0; a ≠ -0. c/m rằng \(\dfrac{2c}{a}=\dfrac{b+c}{a+c}\)
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
cho 3 tỷ số bằng nhau là\(\dfrac{a}{b+c};\dfrac{b}{c+a};\dfrac{c}{a+b}\)tìm giá trị của mỗi tỷ số đó(xét\(a+b+c\ne0\)và a+b+c=0
sửa lại đề bài nhé
tìm x ,biết
\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)
+ nếu a+b+c=0
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{c}{a+b}\\\dfrac{a}{b+c}\\\dfrac{b}{c+a}\end{matrix}\right.\Rightarrow x=-1\)
nếu a+b+c \(\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
nếu nếu a+b+c \(\ne0\)
thì x=\(\dfrac{1}{2}\)
nếu nếu a+b+c =0
thì x= -1
x là giá trị của mỗi tỉ số nhé
\(\ne0\)\(\ne0\)
Tìm a,b,c biết tổng của chúng bằng -40 và \(\dfrac{a}{3}=\dfrac{b}{2},\dfrac{b}{6}=\dfrac{c}{5}\)
\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{6}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{9}=\dfrac{b}{6};\dfrac{b}{6}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{9}=\dfrac{b}{6}=\dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{9}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{9+6+5}=\dfrac{-40}{20}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\cdot9=-18\\b=-2\cdot6=-12\\c=-2\cdot5=-10\end{matrix}\right.\)
1. Cho các số thực không âm \(a;b;c\) (không có hai số nào đồng thời bằng 0) thỏa mãn \(a+b+c \leq 3\)
Tìm giá trị nhỏ nhất: \(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
2. Cho các số thực \(a;b;c \in [0;1]\) thỏa mãn \(a+b+c=2\), tìm giá trị lớn nhất và nhỏ nhất của:
\(B=\dfrac{ab}{1+ab}+\dfrac{bc}{1+bc}+\dfrac{ca}{1+ca}\)
Thank you all :)
1.
Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)
Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)
Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)
Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)
Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)
Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)
Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)
Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)
\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)
Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng
2.
Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)
\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)
Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)
Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)
\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)
\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)
Do \(a;b;c\in\left[0;1\right]\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow ab+c+1\ge a+b+c=2\)
\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)
\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)
\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)
Hoàn toàn tương tự, ta có:
\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)
Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)
\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)
\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng
a) Tìm x biết
\(\dfrac{315-x}{101}+\dfrac{313-x}{103}+\dfrac{311-x}{105}+\dfrac{309-x}{107}+4=0\)
b) Cho a,b,c là các số thực khác 0 thỏa mãn
\(\dfrac{a-b+c}{b}=\dfrac{a+b-c}{c}=\dfrac{-a+b+c}{a}\)
Tính giá trị của biểu thức :
P=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho a, b, c > 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le4\)
Tìm MAX : P= \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\)
Cho a,b,c>0 và a+b+c\(\le\dfrac{3}{2}\).Tìm GTNN của biểu thức
\(Q=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
Đừng trình bày tắt quá nhe,mik không hỉu :<
Cho A=\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)(Tổng hai số bất kì trong ba số a,b,c khác 0). Biết a+b+c=7 và \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}=\dfrac{7}{10}\). Hãy chứng tỏ rằng A>\(1^8_{11}\)