H24

1. Cho các số thực không âm \(a;b;c\) (không có hai số nào đồng thời bằng 0) thỏa mãn \(a+b+c \leq 3\)

Tìm giá trị nhỏ nhất: \(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)

2. Cho các số thực \(a;b;c \in [0;1]\) thỏa mãn \(a+b+c=2\), tìm giá trị lớn nhất và nhỏ nhất của:

\(B=\dfrac{ab}{1+ab}+\dfrac{bc}{1+bc}+\dfrac{ca}{1+ca}\)

Thank you all :)

NL
25 tháng 3 2022 lúc 20:44

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

Bình luận (0)
NL
25 tháng 3 2022 lúc 20:56

2.

Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)

\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)

Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)

\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)

\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)

Do \(a;b;c\in\left[0;1\right]\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow ab+c+1\ge a+b+c=2\)

\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)

\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)

\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)

Hoàn toàn tương tự, ta có: 

\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)

Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)

\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)

\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
VL
Xem chi tiết
TP
Xem chi tiết
KD
Xem chi tiết
HT
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
NA
Xem chi tiết
TM
Xem chi tiết