Bài 8: Tính chất của dãy tỉ số bằng nhau

QT

cho 3 tỷ số bằng nhau là\(\dfrac{a}{b+c};\dfrac{b}{c+a};\dfrac{c}{a+b}\)tìm giá trị của mỗi tỷ số đó(xét\(a+b+c\ne0\)và a+b+c=0

JP
3 tháng 1 2021 lúc 14:15

sửa lại đề bài nhé 

tìm x ,biết 

\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)

+ nếu a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{c}{a+b}\\\dfrac{a}{b+c}\\\dfrac{b}{c+a}\end{matrix}\right.\Rightarrow x=-1\)

nếu a+b+c \(\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

nếu nếu a+b+c \(\ne0\)

thì x=\(\dfrac{1}{2}\)

nếu nếu a+b+c =0

thì x= -1

x là giá trị của mỗi tỉ số nhé

\(\ne0\)\(\ne0\)

 

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
CD
Xem chi tiết
QT
Xem chi tiết
HM
Xem chi tiết
TL
Xem chi tiết
OY
Xem chi tiết
B2
Xem chi tiết
QT
Xem chi tiết
CV
Xem chi tiết