Những câu hỏi liên quan
NA
Xem chi tiết
H24
23 tháng 10 2020 lúc 20:07

Gọi A là trọng tâm tam giác ABC. AB = GB-GA = ỊmB-|kA 3 3 = |(AK-BM) = |(Ó-Ĩ) Ta có BC = GC - GB = (-GA - GB) - GB =-GA-2GB = AG + 2BG Chú ý: A là trọng tâm AABC thì GA + AB + AC = õ.

Bình luận (0)
 Khách vãng lai đã xóa
NA
23 tháng 10 2020 lúc 21:23

Mình cũng biết giải đến đây mà

Bình luận (0)
 Khách vãng lai đã xóa
H24
23 tháng 10 2020 lúc 21:40

NHớ trả nha! đừng ăn cháo đá bát

Bình luận (0)
 Khách vãng lai đã xóa
QL
Xem chi tiết
HM
25 tháng 9 2023 lúc 21:24

\(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG}  \Leftrightarrow \overrightarrow {MG}  + \overrightarrow {GA}  + \overrightarrow {MG}  + \overrightarrow {GB}  + \overrightarrow {MG}  + \overrightarrow {GC}  = 3\overrightarrow {MG} \)

\( \Leftrightarrow \left( {\overrightarrow {MG}  + \overrightarrow {MG}  + \overrightarrow {MG} } \right) + \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right) = 3\overrightarrow {MG} \)

\( \Leftrightarrow 3\overrightarrow {MG}  = 3\overrightarrow {MG} \) (đpcm) ( Vì G  là trọng tâm của tam giác ABC nên \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \))

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết
SK
Xem chi tiết
BV
15 tháng 5 2017 lúc 11:24

Ta đã biết nếu G' là trọng tâm tam giác ABC thì:
\(\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\).
Gỉa sử có điểm G thỏa mãn: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta sẽ chứng minh \(G\equiv G'\).
Thật vậy:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}+\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GG'}=\overrightarrow{0}\).
Vậy \(G\equiv G'\).

Bình luận (0)
H24
Xem chi tiết
NL
15 tháng 12 2020 lúc 22:17

D là điểm nào bạn?

Bình luận (1)
NL
16 tháng 12 2020 lúc 10:28

1.

\(\Leftrightarrow x^2-3x+1+\dfrac{\sqrt{3}}{3}\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2b^2-a^2+\dfrac{\sqrt{3}}{3}ab=0\)

\(\Leftrightarrow\left(\sqrt{3}b-a\right)\left(2b+\sqrt{3}a\right)=0\)

\(\Leftrightarrow a=\sqrt{3}b\)

\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}.\sqrt{x^2-x+1}\)

\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)

\(\Leftrightarrow2x^2-4x+2=0\)

\(\Leftrightarrow x=1\)

Bình luận (0)
NL
16 tháng 12 2020 lúc 10:44

Bài 2:

Đặt \(AB=x>0\) 

\(AG=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{a^2+x^2}\)

\(CG=\dfrac{2}{3}\sqrt{\left(\dfrac{AB}{2}\right)^2+AC^2}=\dfrac{2}{3}\sqrt{\dfrac{x^2}{4}+a^2}\)

\(BG=\dfrac{2}{3}\sqrt{AB^2+\left(\dfrac{AC}{2}\right)^2}=\dfrac{2}{3}\sqrt{x^2+\dfrac{a^2}{4}}\)

Ta có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{AG}\)

\(\Leftrightarrow GB^2+GC^2+2GB.GC.cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=AG^2\)

\(\Leftrightarrow cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=\dfrac{AG^2-BG^2-CG^2}{2GB.GC}\)

\(=\dfrac{\dfrac{a^2+x^2}{4}-\left[\dfrac{4}{9}\left(\dfrac{x^2}{4}+a^2\right)+\dfrac{4}{9}\left(\dfrac{a^2}{4}+x^2\right)\right]}{\dfrac{2}{9}\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\)

\(=-\dfrac{11}{4}.\dfrac{x^2+a^2}{2\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\le-\dfrac{11}{4}.\dfrac{x^2+a^2}{5\left(x^2+a^2\right)}=-\dfrac{11}{20}\)

Dấu "=" xảy ra khi \(a=x\Leftrightarrow AB=a\)

Bình luận (0)
CV
Xem chi tiết
CM
Xem chi tiết
NL
15 tháng 12 2020 lúc 0:35

Bạn xem lại đề, I không thể là trung điểm AC.

Vì I là trung điểm AC, K thuộc AC nghĩa là I, K đều thuộc AC, vậy B,I,K thẳng hàng chỉ khi B cũng thuộc AC nốt (vô lý)

 

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 0:59

Với điểm M bất kì ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \)

Chọn M trùng A, ta được: \(\overrightarrow {AA}  + \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG}  \Leftrightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG} .\)

Bình luận (0)