§3. Tích của vectơ với một số

SK

Cho tam giác ABC. Chứng minh rằng nếu \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\) thì G là trọng tâm của tam giác ABC ?

BV
15 tháng 5 2017 lúc 11:24

Ta đã biết nếu G' là trọng tâm tam giác ABC thì:
\(\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\).
Gỉa sử có điểm G thỏa mãn: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta sẽ chứng minh \(G\equiv G'\).
Thật vậy:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}+\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GG'}=\overrightarrow{0}\).
Vậy \(G\equiv G'\).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
SK
Xem chi tiết
TC
Xem chi tiết
PT
Xem chi tiết
SK
Xem chi tiết
DM
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết
AC
Xem chi tiết