Những câu hỏi liên quan
H24
Xem chi tiết
NT
5 tháng 4 2016 lúc 20:57

cát tuyến là đường thẳng cắt đường tròn tại 2 điểm

Bình luận (0)
H24
5 tháng 4 2016 lúc 21:00

mà làm sao để em vẽ đc cát tuyến mà điểm thứ nhất cắt đg tròn nắm giữa điểm đầu và điểm cắt đg tròn thứ 2

Bình luận (0)
NT
5 tháng 4 2016 lúc 21:08

nối lại cứ cắt 2 điểm của đường tròn là được

Bình luận (0)
TN
Xem chi tiết
NT
18 tháng 2 2022 lúc 9:31

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

b: Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔAEB

Suy ra: AB/AE=AD/AB

hay \(AB^2=AD\cdot AE\)

Bình luận (0)
HN
Xem chi tiết
DP
29 tháng 2 2024 lúc 21:47

loading...  

Bình luận (0)
TL
Xem chi tiết
DT
Xem chi tiết
3P
Xem chi tiết
NT
9 tháng 12 2023 lúc 12:59

loading...

Bình luận (0)
KH
Xem chi tiết
NT
6 tháng 3 2021 lúc 20:31

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABO vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:

\(AH\cdot AO=AB^2\)(1)

Xét (O) có

\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD

\(\widehat{BED}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

Do đó: \(\widehat{ABD}=\widehat{BED}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

hay \(\widehat{ABD}=\widehat{AEB}\)

Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔAEB(g-g)

Suy ra: \(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AE\cdot AD\)(2)

Từ (1) và (2) suy ra \(AH\cdot AO=AD\cdot AE\)(đpcm)

 

Bình luận (1)
LT
Xem chi tiết
PA
9 tháng 7 2020 lúc 19:04

từ điểm A nằm ngoài đường tròn (O,R) vẽ tiếp tuyến AB,cát tuyến AMN với đường tròn( M nằm giữa A,N, B thuộc cung lớn MN) gọi C là điểm chính giữa cung nhỏ MN. đường thẳng MN lần lượt cắt OC và BC tại I và E.
a. Chứng minh tứ giác AIOB nội tiếp
b. Chứng minh tam giác ABE cân
c. Biết AB bằng 2R.Tính chu vi của đường tròn ngoại tiếp tứ giác AIOB theo R
đ. Kẻ tiếp tuyến thứ 2 AL của đường tròn O.Gọi K là giao điểm của BL và ÒA. Chứng minh AM.AN=AL bình, AK.AO=AM.AN

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
9 tháng 7 2020 lúc 19:23

A B C D E O H

Sau đây là cách của mình

Xét dây ED và tâm O của ( O ) có H là trung điểm của DE nên \(OH\perp DE\)

Khi đó tứ giác AHOC là tứ giác nội tiếp, tương tự ABHD cũng là tứ giác nội tiếp

Khi đó 5 điểm A,B,H,O,C đồng viên

Khi đó \(\widehat{AHB}=\widehat{AOB};\widehat{AHB}=\widehat{AOB}\)

Mà theo tính chất 2 tiếp tuyến cắt nhau ta có được \(OA\) là phân giác của \(\widehat{BOC}\) 

Hay \(\widehat{AOB}=\widehat{AOC}\Rightarrow\widehat{AHB}=\widehat{AHC}\Rightarrow HA\) là phân giác của ^BHC

Vậy ta có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
NP
Xem chi tiết