Câu 19. Cho ${A}=\dfrac{2008^{2008}+1}{2008^{2009}+1}$; ${B}=\dfrac{2008^{2007}+1}{2008^{2008}+1}$. So sánh $A$ và $B$.
A=\(\dfrac{2008^{2008}+1}{2008^{2009}+1}\) B=\(\dfrac{2008^{2007}+1}{2008^{2008}+1}\)
So sánh bt: \(A=\dfrac{2008^{2008}+1}{2008^{2009}+1};B=\dfrac{2008^{2007}+1}{2008^{2008}+1}\)
\(A=\dfrac{2008^{2008}+1}{2008^{2009}+1}\)
\(2008\cdot A=\dfrac{2008^{2009}+2008}{2008^{2009}+1}\)
\(=\dfrac{2008^{2009}+1+2007}{2008^{2009}+1}\)
\(=1+\dfrac{2007}{2008^{2009}+1}\)
\(B=\dfrac{2008^{2007}+1}{2008^{2008}+1}\)
\(2008\cdot B=\dfrac{2008^{2008}+2008}{2008^{2008}+1}\)
\(=\dfrac{2008^{2008}+1+2007}{2008^{2008}+1}\)
\(=1+\dfrac{2007}{2008^{2008}+1}\)
Ta có: \(2008^{2009}+1>2008^{2008}+1\)
\(\Rightarrow\dfrac{1}{2008^{2009}+1}< \dfrac{1}{2008^{2008}+1}\)
\(\Rightarrow\dfrac{2007}{2008^{2009}+1}< \dfrac{2007}{2008^{2008}+1}\)
\(\Rightarrow1+\dfrac{2007}{2008^{2009}+1}< 1+\dfrac{2007}{2008^{2008}+1}\)
hay \(A < B\)
#\(Toru\)
So sánh \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1};B=\dfrac{2008^{2009}}{2008^{2009}-3}\)
ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)
B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)
ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)
vậy A<B
Cmr : A = \(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}+\dfrac{2008}{2009}}\) là số tự nhiên
Câu 18. Tổng các số nguyên x thỏa mãn − 10 13 x là A. 33. B. 47 . C. 23. D. 46
Câu 19. Khi bỏ dấu ngoặc trong biểu thức: 2009 (5 9 2008) − − + ta được A. 2009 5 9 2008 +−− . B. 2009 5 9 2008 − − + . C. 2009 5 9 2008 − + − . D. 2009 5 9 2008 − + + .
Câu 20. Tính nhanh 171 [( 53) 96 ( 171)] + − + + − . A. −149. B. 43. C. 149. D. −43.
Câu 21. Giá trị của biểu thức − − + − − 15 17 12 (12 15) bằng A. −12 . B. −15. C. −17. D. −18. Câu 22. Tìm x biết ( 5) ( 2) 2 ( 15) − − = − − x A. −3. B. −2 . C. −5. D. −4 .
* Chưng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
Đặt \(2008=a\)
\(\Leftrightarrow A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-\dfrac{2a\left(a+1\right)}{a+1}+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2009\left(đpcm\right)\)
* Cho a, b, c ≥ 0. Chứng minh rằng a+b+c ≥ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
* Chứng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)
Chứng minh rằng
A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là số tự nhiên
`A=\sqrt{1+2008^2+2008^2/2009^2}+2008/2009`
`=\sqrt{1+2008^2+2.2008+2008^2/2009^2-2.2008}+2008/2009`
`=\sqrt{(2008+1)^2-2.2008+2008^2/2009^2}+2008/2009`
`=\sqrt{2009-2.2008/2009*2009+2008^2/2009^2}+2008/2009`
`=\sqrt{(2009-2008/2009)^2}+2008/2009`
`=|2009-2008/2009|+2008/2009`
`=2009-2008/2009+2008/2009`
`=2009` là 1 số tự nhiên
So sánh A và B biết: A= \(\dfrac{2008+2008+2010}{2009+2010+2011}\) và B= \(\dfrac{2008}{2009}\)+ \(\dfrac{2009}{2010}\)+ \(\dfrac{2010}{2011}\)
A = \(\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)
Ta có:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)
Từ 3 điều trên suy ra : A < B