Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)
* Chưng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
Cmr : A = \(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}+\dfrac{2008}{2009}}\) là số tự nhiên
CMR: A = \(\sqrt{1+2008^2+\frac{2008^2}{2009^2}}+\frac{2008}{2009}\) có giá trị là số tự nhiên
Cho \(M=\left(\sqrt{3}+\sqrt{2}\right)^{2008}+\left(\sqrt{3}-\sqrt{2}\right)^{2008}\)
a: Chứng minh rằng Mcó giá trị nguyên
b: Tìm chữ số tận cùng của M
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
Cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{a}{\sqrt{b^2+\dfrac{bc}{4}+c^2}}+\dfrac{b}{\sqrt{c^2+\dfrac{ca}{4}+a^2}}+\dfrac{c}{\sqrt{a^2+\dfrac{ba}{4}+b^2}}\ge2\)
Cho a, b, c là các số thực dương đôi một khác nhau thỏa mãn:
\(\dfrac{\sqrt{ab}+1}{\sqrt{a}}=\dfrac{\sqrt{bc}+1}{\sqrt{b}}=\dfrac{\sqrt{ca}+1}{\sqrt{c}}\)
Chứng minh rằng abc = 1
Chứng minh rằng \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+.............+\frac{1}{2009\sqrt{2008}}< 2\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
#Toán lớp 9