Chương I - Căn bậc hai. Căn bậc ba

LL

Chứng minh rằng
A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là số tự nhiên

HD
30 tháng 6 2021 lúc 16:19

`A=\sqrt{1+2008^2+2008^2/2009^2}+2008/2009`

`=\sqrt{1+2008^2+2.2008+2008^2/2009^2-2.2008}+2008/2009`

`=\sqrt{(2008+1)^2-2.2008+2008^2/2009^2}+2008/2009`

`=\sqrt{2009-2.2008/2009*2009+2008^2/2009^2}+2008/2009`

`=\sqrt{(2009-2008/2009)^2}+2008/2009`

`=|2009-2008/2009|+2008/2009`

`=2009-2008/2009+2008/2009`

`=2009` là 1 số tự nhiên

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
VD
Xem chi tiết
TN
Xem chi tiết
VQ
Xem chi tiết
TN
Xem chi tiết
VH
Xem chi tiết
DD
Xem chi tiết
NJ
Xem chi tiết
HL
Xem chi tiết