SN
Xem chi tiết
QL
7 giờ trước (0:00)

Chúc mừng năm mới! Chúc tất cả các bạn học sinh trong cộng đồng sẽ có một năm thật bùng nổ với những con điểm 10 và những tấm bằng xuất sắc nhé. Chúc tất cả các em sẽ có sức khỏe và luôn vui vẻ, lạc quan và tận hưởng một năm mới bên gia đình và bạn bè nhé :)

Năm mới, anh tiết lộ sẽ có một chuỗi sự kiện gồm hơn 10 sự kiện và hàng loạt tính năng mới kiếm thưởng trên Hoc24 đó. Bật mí với mọi người sau nha, HAPPY NEW YEAR 2025!

Bình luận (1)
KR
7 giờ trước (0:03)

Happy new year mọi ngườiii 💕💕

Bình luận (0)
H24
7 giờ trước (0:08)

Chúc mừng năm mới!! Chúc mọi người có khởi đầu rực rỡ trong năm 2025.

Bình luận (0)
NN
Xem chi tiết
AH
25 tháng 3 2018 lúc 0:24

Lời giải:

Đặt \(z=a+bi\)

Từ \(|z|=m^2+2m+5\Leftrightarrow \sqrt{a^2+b^2}=m^2+2m+5\)

\(\Leftrightarrow a^2+b^2=(m^2+2m+5)^2\)

\(w=(3-4i)z-2i=(3-4i)(a+bi)-2i\)

Thực hiện khai triển: \(w=(3a+4b)+i(3b-4a-2)\)

Bán kính đường tròn chứa tập hợp biểu diễn số phức $w$ là:

\(R=\sqrt{(3a+4b)^2+(3b-4a-2)^2}\)

\(=\sqrt{25(a^2+b^2)+16a-12b+4}\)

Ta có:

\(25(a^2+b^2)+16a-12b+4=\frac{45}{2}(a^2+b^2)+(a\sqrt{\frac{5}{2}}+\frac{8\sqrt{10}}{5})^2+(b\sqrt{\frac{5}{2}}-\frac{6\sqrt{10}}{5})^2-36\)

\(\geq \frac{45}{2}(a^2+b^2)-36\)

\(\Rightarrow R\geq \sqrt{\frac{45}{2}(m^2+2m+5)^2-36}=\sqrt{\frac{45}{2}[(m+1)^2+4]^2-36}\)

\(\geq \sqrt{\frac{45}{2}.4^2-36}=\sqrt{324}\)

Vậy \(R_{\min}=\sqrt{324}=18\)

Bình luận (0)
PN
Xem chi tiết
H24
15 tháng 3 2017 lúc 21:08

a) Một cách khác để cm BĐT tam giác:

A B C H

∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB.

b) CMR: PM + PN > 2 PI:

M N P I Q

Trên tia PI lấy Q sao cho PI = QI
Xét ΔMIQ và ΔNIP có :
+ PI = QI (cách vẽ)
+ \(\widehat{I_1}=\widehat{I_2}\) (đối đỉnh)
+ MI = NI (gt)
=> ΔMIQ = ΔNIP (c-g-c)
=> PN = QM
Áp dụng bất đẳng thức trong tam giác đối với ΔMPQ Ta có: MP+MQ>PQ ⇒ PM+PN>PI+QI ⇒ PM+PN>2PI

Bình luận (1)
HN
Xem chi tiết
AH
1 tháng 3 2018 lúc 14:58

Lời giải:

Ta có:

\(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin x}{(\sin x+\cos x)^3}dx+\int ^{\frac{\pi}{4}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx\)

\(=A+B\)

Xét riêng rẽ:

\(A=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin^3 x}{(\sin x+\cos x)^3}.\frac{dx}{\sin ^2x}=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{\left(\frac{\sin x+\cos x}{\sin x}\right)^3}d(-\cot x)\)

\(=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{(\cot x+1)^3}d(-\cot x)=-\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{d(\cot x+1)}{(\cot x+1)^3}\)

\(=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{4}\end{matrix}\right|\frac{1}{2(\cot x+1)^2}=\frac{3}{8}\)

\(B=\int ^{\frac{\pi}{4}}_{0}\frac{\sin x+\cos x-\cos x}{(\sin x+\cos x)^3}dx\)\(=\int ^{\frac{\pi}{4}}_{0}\frac{ 1}{(\sin x+\cos x)^2}dx-\int ^{\frac{\pi}{4}}_{0}\frac{\cos x}{(\sin x+\cos x)^3}dx\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos x}\right)^2}.\frac{dx}{\cos ^2x}-\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos^3 x}\right)^3}.\frac{dx}{\cos ^2x}\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^3}\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^3}\)

\(=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{-1}{\tan x+1}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{1}{2(\tan x+1)^2}=\frac{1}{8}\)

Do đó: \(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}\)

Sở dĩ phải chia tích phân thành tổng nhỏ như vậy là do khi ta thực hiện chia sin x xuống dưới mẫu thì hàm số không liên tục trong đoạn \([\frac{\pi}{2}; 0]\)

Bình luận (1)
LP
Xem chi tiết
H24
26 tháng 3 2016 lúc 10:07

kho nhu bay len mat troioe

Bình luận (0)
NT
26 tháng 3 2016 lúc 10:08

gợi ý :

Tìm giá trị của \(m\) để hàm số có cực đại ,cực tiểu .

Bình luận (0)
PD
26 tháng 3 2016 lúc 10:14

Ta có \(y'=3x^2-6mx=0\Leftrightarrow\begin{cases}x=0\\x=2m\end{cases}\)

Để hàm số có cực đại và cực tiểu thì m khác 0

Giả sử hàm số có 2 điểm cực trị là \(A\left(0;4m^3\right),B\left(2m;0\right)\Rightarrow\overrightarrow{AB}=\left(2m;-4m^2\right)\)

Trung điểm của đoạn AB là \(I\left(m;2m^3\right)\)

Điều kiện để AB đối xứng nhau qua đường thẳng y=x là AB vuông góc với đường thẳng y=x và I thuộc đường thẳng y=x

\(\Leftrightarrow\begin{cases}2m-4m^3=0\\3m^3=m\end{cases}\)

Kết hợp với điều kiện ta có : \(m=\pm\frac{\sqrt{2}}{2}\)

Giải ra ta có \(m=\pm\frac{\sqrt{2}}{2};m=0\)

Bình luận (1)
HT
Xem chi tiết
AH
12 tháng 2 2018 lúc 15:22

Lời giải:

Ta có:

\(A=\int \frac{x\sin x+\cos x}{x^2-\cos ^2x}dx=\int \frac{(\cos x-x)+x(\sin x+1)}{x^2-\cos ^2x}dx\)

\(=-\int \frac{dx}{\cos x+x}+\int \frac{x(\sin x+1)}{x^2-\cos ^2x}dx=-\int \frac{dx}{x+\cos x}+\frac{1}{2}\int (\sin x+1)\left(\frac{1}{x-\cos x}+\frac{1}{x+\cos x}\right)dx\)

\(=-\int \frac{dx}{x+\cos x}+\frac{1}{2}\int (\sin x+1)\frac{dx}{x-\cos x}+\frac{1}{2}\int (\sin x-1)\frac{dx}{x+\cos x}+\int \frac{dx}{x+\cos x}\)

\(=\frac{1}{2}\int (\sin x+1)\frac{dx}{x-\cos x}+\frac{1}{2}\int (\sin x-1)\frac{dx}{x+\cos x}\)

\(=\frac{1}{2}\int \frac{d(x-\cos x)}{x-\cos x}+\frac{1}{2}\int \frac{-d(x+\cos x)}{x+\cos x}\)

\(=\frac{1}{2}\ln |x-\cos x|-\frac{1}{2}\ln |x+\cos x|+c\)

Xét biểu thức $B$

\(B=\int \frac{\ln x-1}{x^2-\ln ^2x}dx=\int \frac{(\ln x-x)+(x-1)}{x^2-\ln ^2x}dx\)

\(=-\int \frac{dx}{x+\ln x}+\int \frac{x-1}{x^2-\ln ^2x}dx=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{(x-1)}{x}\left(\frac{1}{x-\ln x}+\frac{1}{x+\ln x}\right)dx\)

\(=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx+\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{x-1}{x}dx\)

\(=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx-\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{1+x}{x}dx+\int \frac{dx}{x+\ln x}\)

\(=\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx-\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{1+x}{x}dx\)

\(=\frac{1}{2}\int \frac{d(x-\ln x)}{x-\ln x}-\frac{1}{2}\int \frac{d(x+\ln x)}{x+\ln x}\)

\(=\frac{1}{2}\ln |x-\ln x|-\frac{1}{2}\ln |x+\ln x|+c\)


Bình luận (1)
H24
Xem chi tiết
DC
1 tháng 2 2018 lúc 11:29

Với điều kiện \(\left(m-2\cos x\right)\left(m-2\sin x\right)\ne0\) (*) phương trình đã cho tương đương với

\(\left(m\sin x-2\right)\left(m-2\sin x\right)=\left(m\cos x-2\right)=\left(m-2\cos x\right)\)

\(\Leftrightarrow m^2\sin x-2m-2m\sin^2x+4\sin x=m^2\cos x-2m-2m\cos^2x+4\cos x\)

\(\Leftrightarrow2m\left(\cos^2x-\sin^2x\right)-m^2\left(\cos x-\sin x\right)-4\left(\cos x-\sin x\right)=0\)

\(\Leftrightarrow\left(\cos x-\sin x\right)\left(2m\left(\cos x+\sin x\right)-m^2-4\right)=0\) (1)

a) Nếu \(m=0\) thì (1) \(\Leftrightarrow\cos x-\sin x=0\)\(\Leftrightarrow\tan x=1\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\). Nghiệm này sẽ không thỏa mãn điều kiện (*) khi và chỉ khi \(\left(m-2\cos\left(\dfrac{\pi}{4}+k\pi\right)\right)\left(m-2\sin\left(\dfrac{\pi}{4}+k\pi\right)\right)=0\)

\(\Leftrightarrow\left(0-\left(-1\right)^k\sqrt{2}\right)\left(0-\left(-1\right)^k\sqrt{2}=0\right)\)

\(\Leftrightarrow\left(-1\right)^k\sqrt{2}=0\) , vô lí.

Vậy khi \(m=0\), phương trình đã cho có nghiệm là \(x=\dfrac{\pi}{4}+k\pi\)

b) Nếu \(m\ne0\) thì (1) tương đương với tập hợp hai phương trình:

\(\tan x=1\) (2) và \(\sqrt{2}\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{m^2+4}{2m}\)\(\Leftrightarrow\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{m^2+4}{2m\sqrt{2}}\) (3)

Trong đó phương trình (3) vô nghiệm vì \(\left|\dfrac{m^2+4}{2m\sqrt{2}}\right|=\dfrac{m^2+4}{2\sqrt{2}\left|m\right|}\ge\dfrac{2\sqrt{4m^2}}{2\sqrt{2}\left|m\right|}=\sqrt{2}>1\).

Phương trình (2) có nghiệm là \(x=\dfrac{\pi}{4}+k\pi\). Nghiệm này sẽ không thỏa mãn điều kiện (*) khi và chỉ khi

\(\left(m-2\cos\left(\dfrac{\pi}{4}+k\pi\right)\right)\left(m-2\sin\left(\dfrac{\pi}{4}+k\pi\right)\right)=0\)\(\Leftrightarrow\left(m-\left(-1\right)^k\sqrt{2}\right)\left(m-\left(-1\right)^k\sqrt{2}=0\right)\)

\(\Leftrightarrow m=\left(-1\right)^k\sqrt{2}\), trái giả thiết \(m\ne\pm\sqrt{2}\).

Tóm lại, trong mọi trường hợp phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+k\pi\) Điều kiện \(x\in[20\pi;30\pi]\) tương đương với \(20\pi\le\dfrac{\pi}{4}+k\pi\le30\pi\)\(\Leftrightarrow20-\dfrac{1}{4}\le k\le30-\dfrac{1}{4}\)\(\Leftrightarrow k=21;22;23;...;29\). Số nghiệm của phương trình trong đoạn đang xét là 9.

Bình luận (0)
PD
Xem chi tiết
AH
19 tháng 12 2017 lúc 17:20

Lời giải:

Ta có:

\(P=\int \frac{2xdx}{(x+1)(x^2+1)^2}=\int \frac{2x(x-1)dx}{(x^2-1)(x^2+1)^2}\)

\(=\int \frac{x(x-1)}{x^2+1}\left(\frac{1}{x^2-1}-\frac{1}{x^2+1}\right)dx\)

\(=\int \frac{x(x-1)}{(x^2+1)(x^2-1)}dx-\int \frac{x(x-1)}{(x^2+1)^2}dx=M-N\)

Xét M

\(M=\int \frac{x(x-1)}{(x^2+1)(x^2-1)}dx=\int \frac{x(x-1)}{2}\left(\frac{1}{x^2-1}-\frac{1}{x^2+1}\right)dx\)

\(=\int \frac{x}{2(x+1)}dx-\int \frac{x(x-1)}{2(x^2+1)}dx\)

\(=\frac{1}{2}\int (1-\frac{1}{x+1})dx-\frac{1}{2}\int (1-\frac{x+1}{x^2+1})dx\)

\(=\frac{1}{2}\int dx-\frac{1}{2}\int \frac{d(x+1)}{x+1}-\frac{1}{2}\int dx+\frac{1}{2}\int \frac{(x+1)dx}{x^2+1}\)

\(=-\frac{1}{2}\ln |x+1|+\frac{1}{2}\int \frac{(x+1)dx}{x^2+1}\)

Xét N

Đặt \(\left\{\begin{matrix} u=x-1\\ dv=\frac{xdx}{(x^2+1)^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\int \frac{xdx}{(x^2+1)^2}=\frac{1}{2}\int \frac{d(x^2+1)}{(x^2+1)^2}=\frac{-1}{2(x^2+1)}\end{matrix}\right.\)

\(\Rightarrow N=\frac{1-x}{2(x^2+1)}+\int \frac{1}{2(x^2+1)}dx\)

Do đó: \(P=M-N=-\frac{1}{2}\ln |x+1|+\frac{x-1}{2(x^2+1)}+\frac{1}{2}\int \frac{xdx}{x^2+1}\)

\(=\frac{-1}{2}\ln |x+1|+\frac{x-1}{2(x^2+1)}+\frac{1}{4}\int \frac{d(x^2+1)}{x^2+1}\)

\(=\frac{-1}{2}\ln |x+1|+\frac{x-1}{2(x^2+1)}+\frac{1}{4}\ln |x^2+1|+c\)

Bình luận (0)
TT
Xem chi tiết
MP
17 tháng 6 2018 lúc 7:49

bài 1 mk o bt lm ; nên mk lm câu 2 thôi nha .

bài 2) ta có : \(\log_x\left(x-\dfrac{1}{4}\right)\ge2\Leftrightarrow x-\dfrac{1}{4}\ge x^2\Leftrightarrow x^2-x+\dfrac{1}{4}\le0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\le0\)

mà ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow0\le\left(x-\dfrac{1}{2}\right)^2\le0\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\) \(\Leftrightarrow x=\dfrac{1}{2}\)

vậy \(x=\dfrac{1}{2}\)

Bình luận (0)
DT
Xem chi tiết
AH
6 tháng 11 2017 lúc 0:36

Câu 47:

Ta có \(\log_3\frac{1-xy}{x+2y}=3xy+x+2y-4\)

\(\Leftrightarrow \log_3(1-xy)-\log_3(x+2y)=3(xy-1)-1+(x+2y)\)

\(\Leftrightarrow \log_3(3-3xy)+(3-3xy)=\log_3(x+2y)+(x+2y)\)

Xét hàm \(f(x)=\log_3x+x\Rightarrow f'(x)=\frac{1}{x\ln 3}+1>0\) với \(x>0\)

Do đó , hàm là hàm đồng biến trên TXĐ

\(\Rightarrow f(3-3xy)=f(x+2y)\Leftrightarrow 3-3xy=x+2y\)

\(\Leftrightarrow y=\frac{3-x}{3x+2}\). Vì \(x,y>0\Rightarrow \frac{3-x}{3x+2}>0\Rightarrow 0< x< 3\)

Ta có \(P=x+\frac{3-x}{3x+2}\)

\(P'=\frac{9x^2+12x-7}{(3x+2)^2}=0\Leftrightarrow x=\frac{-2+\sqrt{11}}{3}\) (chọn) hoặc \(x=\frac{-2-\sqrt{11}}{3}\) (loại vì $x>0$)

Lập bảng biến thiên ta suy ra \(P_{\min}=P(\frac{-2+\sqrt{11}}{3})=\frac{-3+2\sqrt{11}}{3}\)

Đáp án D

Bình luận (0)
AH
6 tháng 11 2017 lúc 0:52

Bài 48:

PT hoành độ giao điểm:

\(x^3-3x^2+x+2-(mx-m+1)=0\)

\(\Leftrightarrow (x-1)(x^2-2x-1-m)=0\)

Để hai đths cắt nhau tại ba điểm phân biệt thì pt trên phải có ba nghiệm phân biệt, tức là \(x^2-2x-(m+1)=0\) có hai nghiệm phân biệt khác 1

\(\Rightarrow \left\{\begin{matrix} 1-2-(m+1)\neq 0\\ \Delta'=1+(m+1)>0\end{matrix}\right.\Rightarrow m> -2\)

Gọi \(x_1,x_2\) là hai nghiệm của pt trên thì \(x_1,x_2=\frac{-b'\pm \sqrt{\Delta'}}{a}=1\pm \sqrt{m+2}\)

Do đề bài không yêu cầu thứ tự các điểm, nên ta đặt ba giao điểm của 2 đths là:

\(A(1;1)\)

\(B(x_1; mx_1-m+1)\)

\(C(x_2;mx_2-m+1)\)

(miễn sao thỏa mãn tồn tại 2 đoạn thẳng tạo bởi 2 trong 3 điểm trên có độ dài bằng nhau)

Ta có:

\(AB=\sqrt{(x_1-1)^2+(mx_1-m)^2}=\sqrt{(x_1-1)^2(m^2+1)}=\sqrt{(m+2)(m^2+1)}\)

\(AC=\sqrt{(x_2-1)^2+(mx_2-m)^2}=\sqrt{(x_2-1)^2(m^2+1)}=\sqrt{(m+2)(m^2+1)}\)

\(BC=.....\)

Nhìn trên thì dễ thấy \(AB=AC\) luôn bằng nhau với mọi \(m>-2\), tức là thỏa mãn đkđb

Vậy \(m>-2 \) hay \(m\in (-2;+\infty)\)

Đáp án D

Bình luận (1)
LC
13 tháng 11 2017 lúc 21:17

chưa học nên éo biết làm

Bình luận (0)
PT
Xem chi tiết