bài 1 tìm các số nguyên x,y biết a)2^x=8
b) 3^4=27
c)(-1,2).x=(-1,2)^4
d)x:(-3/4)=(-3/4)^2
e)(x+1)^3=-125
f)(x-2)^3=64
bài 2 tìm các số nguyên x,y biết
a)(x-1,2)^2=4
d)(x-1,5)^2=9
e)(x-2)^3=64
bài 1 tìm các số nguyên x,y biết a)2^x=8
b) 3^4=27
c)(-1,2).x=(-1,2)^4
d)x:(-3/4)=(-3/4)^2
e)(x+1)^3=-125
f)(x-2)^3=64
bài 2 tìm các số nguyên x,y biết
a)(x-1,2)^2=4
d)(x-1,5)^2=9
e)(x-2)^3=64
a) \(2^x=8\)
⇔ \(2^x=2^3\)
⇒ \(x=3\)
b) \(3^x=27\)
⇔ \(3^x=3^3\)
⇒ \(x=3\)
c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)
d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)
d) \(\left(x+1\right)^3=-125\)
⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)
⇔ \(x+1=-5\)
⇔ \(x=-5-1=-6\)
2:
a: (x-1,2)^2=4
=>x-1,2=2 hoặc x-1,2=-2
=>x=3,2(loại) hoặc x=-0,8(loại)
b: (x-1,5)^2=9
=>x-1,5=3 hoặc x-1,5=-3
=>x=-1,5(loại) hoặc x=4,5(loại)
c: (x-2)^3=64
=>(x-2)^3=4^3
=>x-2=4
=>x=6(nhận)
415.915<2n.3n<1816.216
\(4^{15}.9^{15}=\left(4.9\right)^{15}=36^{15}=\left(6^2\right)^{15}=6^{30}\\ 18^{16}.2^{16}=\left(18.2\right)^{16}=36^{16}=\left(6^2\right)^{16}=6^{32}\\ Vậy:2^n.3^n=6^n\\ Vậy:6^{30}< 6^n< 6^{32}\\ Vậy:n=31\)
(x+0,8)2=0,25
tìm x
\(\left(x+0,8\right)^2=0,25\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+0,8\right)^2=\left(0,5\right)^2\\\left(x+0,8\right)^2=\left(-0,5\right)^2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+0,8=0,5\\x+0,8=-0,5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0,5-0,8=-0,3\\x=-0,5-0,8=-1,3\end{matrix}\right.\)
a)(2x-3)4=54
b)(2x-3)=-64
tìm x
a) \(\left(2x-3\right)^4=5^4\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=8\\2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}=4\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\)
b) \(\left(2x-3\right)^3=-64\)
\(\Rightarrow\left(2x-3\right)^3=\left(-4\right)^3\)
\(\Rightarrow2x-3=-4\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)
a/
\(\left(2x-3\right)^4=5^4\\ \Leftrightarrow\left|2x-3\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=8\\2x=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
Vậy...
b/ 2x-3=-64
<=>2x = -61
<=> x = -61/2
(2x+1)3= -0,001
bằng bao nhiêu
\(\left(2x+1\right)^3=-0,001\)
\(\Rightarrow\left(2x+1\right)^3=\left(-0,1\right)^3\)
\(\Rightarrow2x+1=-0,1\)
\(\Rightarrow2x=-0,1-1\)
\(\Rightarrow2x=-1,1\)
\(\Rightarrow x=\dfrac{-1,1}{2}\)
\(\Rightarrow x=-0,55\)
5^102. 9^1009 / 3^2018 . 25^50
\(\dfrac{5^{102}\cdot9^{1009}}{3^{2018}\cdot25^{50}}\)
\(=\dfrac{5^{102}\cdot\left(3^2\right)^{1009}}{3^{2018}\cdot\left(5^2\right)^{50}}\)
\(=\dfrac{5^{102}\cdot3^{2018}}{3^{2018}\cdot5^{100}}\)
\(=\dfrac{5^2\cdot1}{1\cdot1}\)
\(=25\)
25^50=5^???????????????
☹
5^102=25^?????????????????????
Ta có:
\(5^{102}=5^{2.51}=\left(5^2\right)^{51}=25^{51}\)
\(\Rightarrow5^{102}=25^{51}\)
Ta có 5102 = 52.51 = (52)51 = 2551
⇒ 5102 = 2551
làm 1.68 từ 13 - 21 nha
13:
x^3/2=4
=>x^3=8
=>x=2
14: x^3/-3=9
=>x^3=-27
=>x=-3
15: x^5:x^3=1/16
=>x^2=1/16
=>x=1/4 hoặc x=-1/4
16: x^3=x
=>x(x^2-1)=0
=>x(x-1)(x+1)=0
=>x=0;x=1;x=-1
17: =>x^3=1/27
=>x=1/3
18: =>x^2=9^2=81
=>x=9 hoặc x=-9
19: =>x+2=-2 hoặc x+2=2
=>x=0 hoặc x=-4
20: =>2x-3=5 hoặc 2x-3=-5
=>2x=-2 hoặc 2x=8
=>x=4 hoặc x=-1
21: =>x+4=7 hoặc x+4=-7
=>x=-11 hoặcx=3
(-0.2)^2x5-(8^2x9^5)/3^9x4^3
\(=0.04\cdot5-\dfrac{2^6\cdot3^{10}}{3^9\cdot2^6}=0.2-3=-2.8\)
Yc của đề là gì?