Bài 4: Cấp số nhân

AN

Tìm số hạng đầu và công bội của cấp số nhân \(\left(u_n\right)\), biết:

\(\left\{{}\begin{matrix}u_1-u_3+u_5=65\\u_1+u_7=325\end{matrix}\right.\)

 

 

NT
2 tháng 1 2023 lúc 23:34

\(\Leftrightarrow\left\{{}\begin{matrix}u_1-u_1-2q+u_1+4q=65\\u_1+u_1+6q=325\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+2q=65\\2u1+6q=325\end{matrix}\right.\)

=>u1=-130; q=195/2

Bình luận (0)
TL
3 tháng 1 2023 lúc 0:08

`u_n = u_1 + (n-1).d`

`{(u_1-u_3+u_5=65),(u_1+u_7=325):}`

`<=>{(u_1-u_1-2d+u_1+4d=65),(u_1+u_1+6d=325):}`

`<=>{(u_1+2d=65),(2u_1+6d=325):}`

`<=>{(u_1=-130),(u_2=195/2):}` 

 

 

Bình luận (3)
TL
3 tháng 1 2023 lúc 0:21

`u_n=u_1 . q^(n-1)`

`{(u_1-u_3+u_5=65),(u_1+u_7=325):}`

`<=>{(u_1 -u_1 .q^2 +u_1 .q^4=65),(u_1+u_1 .q^6=325):}`

`<=>{(u_1(1- q^2 + q^4)=65 \(1)),(u_1 .(1+q^6=325 \(2)):}`

Lấy (2) : (1) được: `(q^6+1)/(q^4-q^2+1)=5`

`<=>q=+-2`

TH1: `q=2=>u_1=5`

TH2: `q=-2=> u_1=5`

Vậy `(u_1;q)=(5;2),(5;-2)` 

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
HH
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
IE
Xem chi tiết