Ôn tập góc với đường tròn

SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (3)
SK
Hướng dẫn giải Thảo luận (3)

Đối với hình tròn bán kính R = 1,5: S1 = πR2 = π. 1,52 = 2,25π

Đối với hình tròn bán kính r = 1: S2 = πr2 = π. 12 = π

Vậy diện tích miền gạch sọc là:

S = S1 – S­2 = 2,25 π – π = 1,25 π (đvdt)

b) Hình 70

Diện tích hình quạt có bán kính R = 1,5; n° = 80°

S1=πR2n360=π1,52.80360=π2S1=πR2n360=π1,52.80360=π2

Diện tích hình quạt có bán kính r = 1; n° = 80°

S2=πr2n360=π.12.80360=2π9S2=πr2n360=π.12.80360=2π9

Vậy diện tích miền gạch sọc là: S=S1−S2=π2−2π9=9π−4π18=5π18S=S1−S2=π2−2π9=9π−4π18=5π18

c) Hình 71

Diện tích hình vuông cạnh a = 3 là:

S1 = a2 = 32 =9

Diện tích hình tròn có R = 1,5 là:

S2 = πR2 = π.1,5 2 = 2,25π = 7,06

Vậy diện tích miền gạch sọc là:

S = S1 – S2 = 9 – 7,06 = 1,94 (đvdt).


Trả lời bởi Quang Duy
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Ta có bánh xe A có 60 răng, bánh xe B có 40 răng, bánh xe C có 20 răng nên suy ra chu vi của bánh xe B gấp đôi chu vi bánh xe C, chu vi bánh xe A gấp ba chu vi bánh xe C.

Chu vi bánh xe C là: 2. 3,14 . 1 = 6,28 (cm)

Chu vi bánh xe B là: 6,28 . 2 = 12,56 (cm)

Chu vi bánh xe A là: 6,28 . 3 = 18,84 (cm)

a) Khi bánh xe C quay được 60 vòng thì quãng đường đi được là:

60 . 6,28 = 376,8 (cm)

Khi đó số vòng quay của bánh xe B là:

376,8 : 12,56 = 30 (vòng)

b) Khi bánh xe A quay được 80 vòng thì quãng đường đi được là:

80 . 18,84 = 1507,2 (cm)

Khi đó số vòng quay của bánh xe B là:

1507,2 : 12,56 = 120 (vòng)

c) Bán kính bánh xe B là: 12,56 : (2π) = 12,56 : 6,28 = 2(cm)

Bán kính bánh xe A là: 12,56 : (3π) = 12,56 : 9,42 = 3(cm)

Trả lời bởi Linh subi
SK
Hướng dẫn giải Thảo luận (2)
SK
Hướng dẫn giải Thảo luận (1)

Trong hình 67, cung AmB có số đo là 66o. Hãy:

a) Vẽ góc ở tâm chắn cung AmB. Tính góc AOB.

b) Vẽ góc nội tiếp đỉnh C chắn cung AmB. Tính góc ACB.

c) Vẽ góc tạo bởi tia tiếp tuyến Bt và dây cung BA. Tính góc ABt.

d) Vẽ góc ADB có đỉnh D ở bên trong đường tròn. So sánh ˆADBADB^ với ˆACBACB^ .

e) Vẽ góc AEB có đỉnh E ở bên ngoài đường tròn (E và C cùng phía đối với AB). So sánh ˆAEBAEB^ với ˆACBACB^

Hướng dẫn trả lời:

a) Từ O nối với hai đầu mút của cung AB

Ta có ˆAOBAOB^ là góc ở tâm chắn cung AB

ˆAOBAOB^ là góc ở tân chắn cung AB nên

ˆAOBAOB^ = sđ cung AB = 60°

b) Lấy một điểm C bất kì trên (O). Nối C với hai đầu mút của cung AmB. Ta được góc nội tiếp ˆACBACB^

Khi đó: ˆACB=12sđcungAmB=12600=30ACB^=12sđcungAmB=12600=30

c) Vẽ bán kính OB. Qua B vẽ Bt ⊥ OB. Ta được góc Abt là góc tạo bởi tia tiếp tuyến Bt với dây cung BA.

Ta có: ˆABt=12sđcungAmB=300ABt^=12sđcungAmB=300

d) Lấy điểm D bất kì ở bên trong đường tròn (O). Nối D với A và D với B. ta được góc là góc ở bên trong đường tròn (O)

Ta có:

ˆACB=12sđcungAmBˆADB=12(sđcungAmB+sđcungCK)ACB^=12sđcungAmBADB^=12(sđcungAmB+sđcungCK)

Mà sđcung AmB + sđcung CK > sđcung AmB (do sđcung CK > 0) nên ˆADB>ˆACBADB^>ACB^

e) Lấy điểm E bất kì ở bên ngoài đường tròn, nối E với A và E với B, chúng cắt đường tròn lần lượt tại J và I.

Ta có góc AEB là góc ở bên ngoài đường tròn (O)

Có:

ˆACB=12sđcungAmBˆAEB=12(sđcungAmB−sđcungIJ)ACB^=12sđcungAmBAEB^=12(sđcungAmB−sđcungIJ)

Mà sđcung AmB – sđ cung IJ < sđcung AmB (do sđcung IJ > 0)

Nên ˆAEB<ˆACBAEB^<ACB^

Trả lời bởi Thien Tu Borum
SK
Hướng dẫn giải Thảo luận (3)

Hướng dẫn làm bài:

a) Góc ở tâm.

b) Góc nội tiếp.

c) Góc tạo bởi tiếp tuyến và dây cung.

d) Góc có đỉnh bên trong đường tròn.

e) Góc có đỉnh bên ngoài đường tròn.

Trả lời bởi Thien Tu Borum
SK
Hướng dẫn giải Thảo luận (1)

a) Vẽ hình vuông cạnh 4cm.

b) Vẽ đường tròn ngoại tiếp hình vuông đó. Tính bán kính R của đường tròn này.

c) Vẽ đường tròn nội tiếp hình vuông đó. Tính bán kính r của đường tròn này.

Hướng dẫn trả lời:

a) Dùng êke ta vẽ hình vuông ABCD có cạnh bằng 4cm như sau:

- Vẽ AB = 4cm.

- Vẽ BC ⊥ AB và BC = 4cm

- Vẽ DC ⊥ BC và DC = 4cm

- Nối D với A, ta có AD ⊥ DC và AD = 4cm

b) Tam giác ABC là tam giác vuông cân nên AB = BC.

Áp dụng định lí Py – ta – go trong tam giác vuông ABC, ta có:

AC2=AB2+BC2=2AB2⇔AC2=2.42=32⇒AC=√32=4√2AC2=AB2+BC2=2AB2⇔AC2=2.42=32⇒AC=32=42

Vậy AO=R=AC2=4√22=2√2AO=R=AC2=422=22

Vậy R = 2√2 cm

c) Vẽ OH ⊥ Dc. Vẽ đường tròn tâm O, bán kính OH. Đó là đường tròn nội tiếp hình vuông ABCD

Ta có: OH=AD2=2(cm)OH=AD2=2(cm)

Vậy r = OH = 2cm


\ Trả lời bởi Thien Tu Borum
SK
Hướng dẫn giải Thảo luận (1)