Cho đường tròn (O) và một điểm A cố định trên đường tròn. Tìm quỹ tích các trung điểm M của dây AB khi điểm B di động trên đường tròn đó.
Cho đường tròn (O) và một điểm A cố định trên đường tròn. Tìm quỹ tích các trung điểm M của dây AB khi điểm B di động trên đường tròn đó.
Dựng \(\Delta ABC\), biết BC = 6 cm, \(\widehat{BAC}=80^o,\) đường cao AH có độ dài là 2 cm.
Trình tự dựng gồm các bước sau:
- Dựng đoạn thẳng BC = 6cm
- Dựng cung chứa góc 80 trên đoạn thẳng BC (cung BmC).
- Trên đường vuông góc với BC tại I(I là trung điểm BC), chọn điểm K sao cho IK = 2cm. Từ K dựng đường thẳng vuông góc với IK. Đường thẳng này cắt cung chứa góc BmC tại A và A'.
ΔABC (hoặc ΔA'BC) là tam giác thỏa mãn yêu cầu đề bài.
Trả lời bởi Linh subiCho đường tròn đường kính AB. Qua A và B kẻ hai tiếp tuyến của đường tròn đó. Gọi M là một điểm trên đường tròn. Các đường thẳng AM và BM cắt các tiếp tuyến trên lần lượt tại B' và A'
a) Chứng minh rằng \(AA'.BB'=AB^2\)
b) Chứng minh rằng \(A'A^2=A'M.A'B\)
Cho lục giác đều ABCDEF. Chứng minh rằng đường chéo BF chia AD thành hai đoạn thẳng theo tỉ số 1 : 3 ?
Cho tam giác ABC có ba góc nhọn. Dựng điểm M nằm trong tam giác ABC sao cho \(\widehat{AMB}=\widehat{BMC}=\widehat{CMA}\) ?
Hai ròng rọc có tâm O, O' và bán kính R = 4a, R'=a. Hai tiếp tuyến chung MN và PQ cắt nhau tại A theo góc \(60^0\) (h.14). Tìm độ dài của dây curoa mắc qua hai ròng rọc ?
Tính diện tích của phần gạch sọc trên hình 15 (theo kích thước đã cho trên hình)
Cho tam giác AHB có \(\widehat{H}=90^0,\widehat{A}=30^0,BH=4cm\). Tia phân giác của góc B cắt AH tại O. Vẽ đường tròn (O; OH) và đường tròn (O; OA)
a) Chứng minh đường tròn (O; OH) tiếp xúc với cạnh AB
b) Tính diện tích hình vành khăn nằm giữa hai đường tròn trên
Cho nửa đường tròn đường kính AB. Gọi C là một điểm chạy trên nửa đường tròn đó. Trên AC lấy điểm D sao cho AD = CB. Qua A kẻ tiếp tuyến với nửa đường tròn rồi lấy AE = AB (E và C cùng thuộc một nửa mặt phẳng bờ AB)
a) Tìm quỹ tích điểm D
b) Tính diện tích phần chung của hai nửa đường tròn đường kính AB và AE
Cho hai tam giác đều ACB và ACD, cạnh a. Lần lượt lấy B và D làm tâm vẽ hai đường tròn bán kính a. Kẻ các đường kính ABE và ADE. Trên cung nhở CE của đường tròn tâm B lấy điểm M (không trùng với E và C). Đường thẳng CM cắt đường tròn tâm D tại điểm thứ hai là N. Hai đường thẳng EM và NF cắt nhau tại điểm T. Gọi H là giao điểm của AT và MN. Chứng minh :
a) MNT là tam giác đều
b) AT = 4AH
a) Ta có \(\widehat{AMC}=30^0;\widehat{ANC}=30^0\) ( vì cùng chắn cung AC)
Trả lời bởi Nguyen Thuy Hoa
Phần thuận: giả sử M là trung điểm của dây AB. Ta có OM ⊥ AB (định lí)
Khi B di động trên (O), điểm M luôn nhình OA cố định dưới góc vuông , vậy M thuộc đường tròn đường kính OA.
Phần đảo: lấy điểm M' bất kì trên đường tròn đường kính OA.
Nối M' với A, đường thẳng M'A cắt đường tròn (O) tại B'. Nối M' với O ta có
Trả lời bởi Linh subi