Ôn tập góc với đường tròn

SK

Trong hình 67, cung AmB có số đo là 60o. Hãy:

a) Vẽ góc ở tâm chắn cung AmB. Tính góc AOB.

b) Vẽ góc nội tiếp đỉnh C chắn cung AmB. Tính góc ACB.

c) Vẽ góc tạo bởi tia tiếp tuyến Bt và dây cung BA. Tính góc ABt.

d) Vẽ góc ADB có đỉnh D ở trong đường tròn. So sánh \(\widehat{ADB}\) và \(\widehat{ACB}.\)

e) Vẽ góc AEB có đỉnh E ở bên ngoài đường tròn (E và C cùng phía đối với AB). So sánh \(\widehat{AEB}\) với \(\widehat{ACB}.\)

O A B

TB
13 tháng 4 2017 lúc 17:21

Trong hình 67, cung AmB có số đo là 66o. Hãy:

a) Vẽ góc ở tâm chắn cung AmB. Tính góc AOB.

b) Vẽ góc nội tiếp đỉnh C chắn cung AmB. Tính góc ACB.

c) Vẽ góc tạo bởi tia tiếp tuyến Bt và dây cung BA. Tính góc ABt.

d) Vẽ góc ADB có đỉnh D ở bên trong đường tròn. So sánh ˆADBADB^ với ˆACBACB^ .

e) Vẽ góc AEB có đỉnh E ở bên ngoài đường tròn (E và C cùng phía đối với AB). So sánh ˆAEBAEB^ với ˆACBACB^

Hướng dẫn trả lời:

a) Từ O nối với hai đầu mút của cung AB

Ta có ˆAOBAOB^ là góc ở tâm chắn cung AB

ˆAOBAOB^ là góc ở tân chắn cung AB nên

ˆAOBAOB^ = sđ cung AB = 60°

b) Lấy một điểm C bất kì trên (O). Nối C với hai đầu mút của cung AmB. Ta được góc nội tiếp ˆACBACB^

Khi đó: ˆACB=12sđcungAmB=12600=30ACB^=12sđcungAmB=12600=30

c) Vẽ bán kính OB. Qua B vẽ Bt ⊥ OB. Ta được góc Abt là góc tạo bởi tia tiếp tuyến Bt với dây cung BA.

Ta có: ˆABt=12sđcungAmB=300ABt^=12sđcungAmB=300

d) Lấy điểm D bất kì ở bên trong đường tròn (O). Nối D với A và D với B. ta được góc là góc ở bên trong đường tròn (O)

Ta có:

ˆACB=12sđcungAmBˆADB=12(sđcungAmB+sđcungCK)ACB^=12sđcungAmBADB^=12(sđcungAmB+sđcungCK)

Mà sđcung AmB + sđcung CK > sđcung AmB (do sđcung CK > 0) nên ˆADB>ˆACBADB^>ACB^

e) Lấy điểm E bất kì ở bên ngoài đường tròn, nối E với A và E với B, chúng cắt đường tròn lần lượt tại J và I.

Ta có góc AEB là góc ở bên ngoài đường tròn (O)

Có:

ˆACB=12sđcungAmBˆAEB=12(sđcungAmB−sđcungIJ)ACB^=12sđcungAmBAEB^=12(sđcungAmB−sđcungIJ)

Mà sđcung AmB – sđ cung IJ < sđcung AmB (do sđcung IJ > 0)

Nên ˆAEB<ˆACBAEB^<ACB^

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HY
Xem chi tiết
QN
Xem chi tiết
NH
Xem chi tiết
WB
Xem chi tiết
AT
Xem chi tiết
DA
Xem chi tiết
TN
Xem chi tiết
SK
Xem chi tiết