Bài 3: Những hằng đẳng thức đáng nhớ

ML

Tìm x,y,z biết :

a, (x-z)^2 + (y-z)^2 + y^2+z^2 = 2xy-2yz+6z-9

b, x^2 + 3y^2 + z^2 + 2xy-2yz-2x+4y+10=0

AH
20 tháng 7 2020 lúc 10:21

Lời giải:

a)

$(x-z)^2+(y-z)^2+y^2+z^2=2xy-2yz+6z-9$

$\Leftrightarrow x^2-2xz+z^2+(y-z)^2+y^2+z^2-2xy+2yz-6z+9=0$

$\Leftrightarrow x^2-2x(z+y)+(z^2+y^2+2yz)+(y-z)^2+(z^2-6z+9)=0$

$\Leftrightarrow x^2-2x(y+z)+(y+z)^2+(y-z)^2+(z-3)^2=0$

$\Leftrightarrow (x-y-z)^2+(y-z)^2+(z-3)^2=0$
Vì $(x-y-z)^2\geq 0; (y-z)^2\geq 0; (z-3)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:

$(x-y-z)^2=(y-z)^2=(z-3)^2=0$

$\Rightarrow z=3; y=3; x=6$

b)

$x^2+3y^2+z^2+2xy-2yz-2x+4y+10=0$

$\Leftrightarrow (x^2+2xy+y^2)+(y^2-2yz+z^2)+y^2-2x+4y+10=0$

$\Leftrightarrow (x+y)^2+(y-z)^2+y^2-2(x+y)+6y+10=0$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(y-z)^2+(y^2+6y+9)=0$

$\Leftrightarrow (x+y-1)^2+(y-z)^2+(y+3)^2=0$ (lập luận tương tự phần a)

$\Leftrightarrow y=z=-3; x=4$

Bình luận (0)

Các câu hỏi tương tự
BT
Xem chi tiết
TH
Xem chi tiết
BT
Xem chi tiết
TN
Xem chi tiết
LY
Xem chi tiết
DP
Xem chi tiết
LY
Xem chi tiết
GT
Xem chi tiết
KK
Xem chi tiết