Ôn tập phép nhân và phép chia đa thức

H24

tìm x:

x^2-25-(x+5)=0

(2x-1)^2-(4x^2-1)=0

x^2(x^2+4)-x^2-4=0

HH
20 tháng 6 2018 lúc 21:45

Giải:

a) \(x^2-25-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5-1\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

Vậy ...

b) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1-2x-1\right)=0\)

\(\Leftrightarrow-2\left(2x-1\right)=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

c) \(x^2\left(x^2+4\right)-x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+4=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-4\\x=1\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\) (\(x^2\ge0\ne-4\))

Vậy ...

Bình luận (0)
SK
20 tháng 6 2018 lúc 21:48

a) \(x^2-25-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x^2-25\right)-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5-1\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

b) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(2x-1\right)-\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1-2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right).\left(-2\right)=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c)\(x^2\left(x^2+4\right)-x^2-4=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+4\right)=0\)

\(x^2\ge0\forall x\Rightarrow x^2+4>0\forall x\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Bình luận (0)
TC
20 tháng 6 2018 lúc 21:53

\(1.x^2-25-\left(x+5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+5\right)-\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+5-1\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)

Vậy S={5;-4}

\(2.\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\Rightarrow\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\)

\(\Rightarrow\left(2x-1\right)\left(2x-1-2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)\left(-2\right)=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

Vậy S=\(\left\{\dfrac{1}{2}\right\}\)

Bình luận (0)

Các câu hỏi tương tự
SB
Xem chi tiết
SB
Xem chi tiết
NV
Xem chi tiết
PQ
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
VN
Xem chi tiết
PL
Xem chi tiết