Bài 3: Những hằng đẳng thức đáng nhớ

NQ

Tìm giá trị lớn nhất của các biểu thức sau:

a) A=2x+1-x^2

b)B=4x-4x^2-5

LH
12 tháng 7 2021 lúc 9:14

a)\(A=2x+1-x^2=2-\left(x^2-2x+1\right)=2-\left(x-1\right)^2\le2;\forall x\)

\(\Rightarrow A_{max}=2\Leftrightarrow x=1\)

b)\(B=4x-4x^2-5=-4-\left(4x^2-4x+1\right)=-4-\left(2x-1\right)^2\le-4;\forall x\)

\(\Rightarrow B_{max}=-4\Leftrightarrow x=\dfrac{1}{2}\)

Bình luận (0)
TL
12 tháng 7 2021 lúc 9:16

a) `A=2x+1-x^2`

`=-(x^2-2x-1)`

`=-(x^2-2x+1)+2`

`=-(x-1)^2+2`

Có: `-(x-1)^2 <= forall x => -(x-1)^2+2 <=2`

`=> A_(max)=2 <=> x=1`

b) `B=4x-4x^2-5`

`=-(4x^2-4x+5)`

`=-(4x^2-4x+1)-4`

`=-[(2x)^2-2.2x.1+1^2]-4`

`=-(2x-1)^2+4`

`=> B_(max)=4 <=> x=1/2`

Bình luận (0)
NT
12 tháng 7 2021 lúc 14:08

a) Ta có: \(A=-x^2+2x+1\)

\(=-\left(x^2+2x-1\right)\)

\(=-\left(x+1\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-1

b) Ta có: \(B=-4x^2+4x-5\)

\(=-\left(4x^2-4x+5\right)\)

\(=-\left(2x-1\right)^2-4\le-4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
MP
Xem chi tiết
SP
Xem chi tiết
LS
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết
LL
Xem chi tiết
TH
Xem chi tiết
CT
Xem chi tiết