Bài 3: Những hằng đẳng thức đáng nhớ

NT

1.1 tìm giá trị nhỏ nhất của các biểu thức

a) A=4x^2 +4x+1

b)B=(x-1)* (x+2) *(x+3)*(x+6)

c)C=x^2-2x+y^2-4y+7

1.2 tìm giá trị lớn nhất của các biểu thức

a.A=5-8x-x^2

b.B=5-x^2+2x-4y^2-4y

1.3 a. cho a^2 +b^2 +c^2 =ab+bc +ca chứng minh rằng a=b=c

DH
21 tháng 6 2017 lúc 9:06

Bài 1:

a, \(A=4x^2+4x+1\)

\(A=4x^2+2x+2x+1\)

\(A=2x.\left(2x+1\right)+\left(2x+1\right)\)

\(A=\left(2x+1\right)^2\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(2x+1\right)^2\ge0\)

Hay \(A\ge0\) với mọi giá trị của \(x\in R\).

Để \(A=0\)thì \(\left(2x+1\right)^2=0\Rightarrow2x=-1\Rightarrow x=\dfrac{-1}{2}\)

Vậy.....

b, \(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(B=\left[\left(x-1\right).\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(B=\left(x^2+6x-x+6\right).\left(x^2+3x+2x+6\right)\)

\(B=\left(x^2+5x+6\right)\left(x^2+5x+6\right)\)

\(B=\left(x^2+5x+6\right)^2\)

\(B=\left(x^2+2,5x+2,5x+6,25-0,25\right)^2\)

\(B=\left[\left(x+2,5\right)^2-0,25\right]^2\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+2,5\right)^2\ge0\Rightarrow\left(x+2,5\right)^2-0,25\ge-0,25\)

\(\Rightarrow\left[\left(x+2,5\right)^2-0,25\right]^2\ge0,0625\)

Hay \(B\ge0,0625\) với mọi giá trị của \(x\in R\).

Để \(B=0,0625\) thì \(\left[\left(x+2,5\right)^2-0,25\right]^2=0,0625\)

\(\Rightarrow\left(x+2,5\right)^2-0,25=0,25\)

\(\Rightarrow x+2,5=0\Rightarrow x=-2,5\)

Vậy.......

Câu c làm tương tự!! Chúc bạn học tốt!!!

Bình luận (0)
TN
21 tháng 6 2017 lúc 9:02

\(A=4x^2+4x+1=\left(2x+1\right)^2\ge0\)

Vậy GTNN của A là 0 khi \(\left(2x+1\right)^2=0\Rightarrow2x+1=0\Rightarrow x=\dfrac{-1}{2}\)

\(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\) \(=\left(x^2+5x\right)^2-36\ge-36\)

Vậy GTNN của B là -36 khi \(\left(x^2+5x\right)^2=0\Rightarrow x\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) \(C=x^2-2x+y^2-4y+7=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+3=\left(x-1\right)^2+\left(y-2\right)^2+3\ge3\)

Vậy GTNN của C là 3 khi \(\left[{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Bình luận (1)
TN
21 tháng 6 2017 lúc 9:06

\(A=5-8x-x^2=21-\left(16+8x+x^2\right)=21-\left(4+x\right)^2\le21\)Vậy GTLN của A là 21 khi \(4-x=0\Rightarrow x=4\)

Bình luận (0)
TN
21 tháng 6 2017 lúc 9:15

\(A=4x^2+4x+11=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\)Vậy GTNN của A là 10 khi \(2x+1=0\Rightarrow x=\dfrac{-1}{2}\)

Bình luận (1)

Các câu hỏi tương tự
LH
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
DQ
Xem chi tiết
BN
Xem chi tiết
TN
Xem chi tiết
TH
Xem chi tiết
UT
Xem chi tiết
HP
Xem chi tiết