a, \(x^8+x^7+1\)
= \(x^7\left(x+1\right)+1\)
= \(x^7\left(x+1\right)+1+x-x\)
= \(x^7\left(x+1\right)+\left(x+1\right)-x\)
= \(\left(x^7+1\right)\left(x+1\right)-x\)
a) \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\) \(=x^6\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
b) \(x^4+64\)
\(=\left(x^2+8\right)^2-16x^2\)
\(=\left(x^2+8+4x\right)\left(x^2+8-4x\right)\)