Bài 3: Những hằng đẳng thức đáng nhớ

DH

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

Giúp tớ tí nhenlolang

HL
13 tháng 7 2017 lúc 8:05

Đặt A = \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(2.\)\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3^{32}-1\right)\left(3^{32}+1\right)\)

2A = \(3^{64}-1\)

A = \(\dfrac{3^{64}-1}{2}\)

Bình luận (0)
NT
13 tháng 7 2017 lúc 8:07

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\dfrac{1}{2}\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\dfrac{1}{2}\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\dfrac{1}{2}\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\dfrac{1}{2}\)\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\dfrac{1}{2}=\left(3^{32}-1\right)\left(3^{32}+1\right).\dfrac{1}{2}\)

\(=\left(3^{64}-1\right).\dfrac{1}{2}=\dfrac{3^{64}-1}{2}\)

Bình luận (0)
H24
13 tháng 7 2017 lúc 8:08

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{64}-1\right)\)

Bình luận (2)

Các câu hỏi tương tự
HD
Xem chi tiết
KN
Xem chi tiết
VS
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
HD
Xem chi tiết
NT
Xem chi tiết
BP
Xem chi tiết
TH
Xem chi tiết