Bài 3: Những hằng đẳng thức đáng nhớ

HP

cmr \(q\left(x\right)=3^{4x+2}+3.5^{2x+1}+2^{3x+1}+2.4^{3x+1}⋮17\forall x\in N\)

AH
14 tháng 8 2017 lúc 17:58

Lời giải:

Biến đổi: \(q(x)=9.81^x+15.25^x+2.8^x+8.64^x\)

Lại có:

\(\left\{\begin{matrix} 81\equiv 13\pmod {17}\rightarrow 81^k\equiv 13^k\pmod {17}\\ 25\equiv 8\pmod {17}\rightarrow 25^k\equiv 8^k\pmod {17}\\ 64\equiv 13\pmod {17}\rightarrow 64^k\equiv 13^k\pmod {17}\end{matrix}\right.\)

Do đó, \(q(x)\equiv 9.13^k+15.8^k+2.8^k+8.13^k\pmod {17}\)

\(\Leftrightarrow q(x)\equiv 17.13^k+17.8^k\equiv 0\pmod {17}\)

\(\Leftrightarrow q(x)\vdots 17\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
DQ
Xem chi tiết
DN
Xem chi tiết
TH
Xem chi tiết
RM
Xem chi tiết
DQ
Xem chi tiết
HP
Xem chi tiết
DQ
Xem chi tiết
NK
Xem chi tiết
DQ
Xem chi tiết