Ôn tập phép nhân và phép chia đa thức

TG

CMR: \(n^6+n^4-2n^2\) chia hết cho 72 \(\forall n\)

LD
3 tháng 1 2019 lúc 15:33

Đặt \(Q=n^6+n^4-2n^2\)

\(\Rightarrow Q=n^2\left(n^4+n^2-2\right)\)

\(=n^2\left[\left(n^4-1\right)+\left(n^2-1\right)\right]\)

\(=n^2\left[\left(n^2-1\right)\left(n^2+1\right)+\left(n^2-1\right)\right]\)

\(=n^2\left(n^2-1\right)\left(n^2+2\right)\)

\(=n\cdot n\left(n+1\right)\left(n-1\right)\left(n^2+2\right)\)

* Nếu n chẵn. Đặt n = 2k (với k thuộc Z)

\(\Rightarrow Q=4k^2\left(2k+1\right)\left(2k-1\right)\left(4k^2+2\right)\)

\(=4k^2\left(2k-1\right)\left(2k+1\right)\cdot2\left(2k^2+1\right)\)

\(=8k^2\left(2k^2+1\right)\left(2k+1\right)\left(2k-1\right)⋮8\)

* Nếu n lẻ. Đặt n = 2k+1 (với k thuộc Z)

\(\Rightarrow\)\(Q = (2k + 1)^2 .2k (2k + 2)(4k^2 + 4k + 1 + 2) \)

\(= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) \)

\(k\left(k+1\right)⋮2\) \(\Rightarrow Q⋮8\)

Vậy \(Q⋮8\)

** Nếu \(n⋮3\)

\(\Rightarrow n^2⋮9\Rightarrow Q⋮9\)

** Nếu \(n⋮̸3\)

\(\left(n-1\right)n\left(n+1\right)⋮3\)

\(n⋮̸3\Rightarrow n^2+2⋮3\)

\(\Rightarrow Q⋮9\)

\(\left(8;9\right)=1\Rightarrow Q⋮72\)

Bình luận (0)

Các câu hỏi tương tự
KS
Xem chi tiết
PQ
Xem chi tiết
TG
Xem chi tiết
NM
Xem chi tiết
TN
Xem chi tiết
LN
Xem chi tiết
NA
Xem chi tiết
LN
Xem chi tiết
BV
Xem chi tiết