Bài 3: Những hằng đẳng thức đáng nhớ

H24

Chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) với a,b,c >0

NL
23 tháng 10 2019 lúc 21:22

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)

Theo BĐT Cauchy ta có:

\(\left\{{}\begin{matrix}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\\a+b+c\ge3\sqrt[3]{abc}\end{matrix}\right.\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge\frac{3}{\sqrt[3]{abc}}.3\sqrt[3]{abc}=9\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TB
Xem chi tiết
DM
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
TD
Xem chi tiết
MD
Xem chi tiết