Ôn tập phép nhân và phép chia đa thức

PL

chứng minh biểu thức luôn dương

a) A=16x2+8x+3

b) B=y2-5y+8

c) C=2x2-2x+2

d) D=9x2-6x+25y2+10y+4

tìm Min hoặc Max của các biểu thức sau

a) M=x2+6x-1

b) N=10y-5y2-3

Giupa mình với nhabucminh

TL
26 tháng 10 2017 lúc 15:47

\(A=16x^2+8x+3\\ A=16x^2+8x+1+2\\ A=\left(16x^2+8x+1\right)+2\\ A=\left(4x+1\right)^2+2\\ Do\left(4x+1\right)^2\ge0\forall x\\ \Rightarrow A=\left(4x+1\right)^2+2\ge2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(4x+1\right)^2=0\\ \Leftrightarrow4x+1=0\\ \Leftrightarrow4x=-1\\ \Leftrightarrow x=-\dfrac{1}{4}\\ \text{Vậy }A_{\left(Min\right)}=2\text{ khi }x=-\dfrac{1}{4}\\ \)

\(B=y^2-5y+8\\ B=y^2-5y+\dfrac{25}{4}+\dfrac{7}{4}\\ B=\left(y^2-5y+\dfrac{25}{4}\right)+\dfrac{7}{4}\\ B=\left[y^2-2\cdot y\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{7}{4}\\ B=\text{ }\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\\ Do\text{ }\left(y-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow B=\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(y-\dfrac{5}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{5}{2}=0\\ \Leftrightarrow y=\dfrac{5}{2}\\ \text{Vậy }B_{\left(Min\right)}=\dfrac{7}{4}\text{ }khi\text{ }y=\dfrac{5}{2}\)

\(C=2x^2-2x+2\\ C=2x^2-2x+\dfrac{1}{2}+\dfrac{3}{2}\\ C=\left(2x^2-2x+\dfrac{1}{2}\right)+\dfrac{3}{2}\\ C=2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}\\ C=2\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{3}{2}\\ C=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\\ Do\text{ }\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow C=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{1}{2}=0\\ \Leftrightarrow x=\dfrac{1}{2}\\ \text{Vậy }C_{\left(Min\right)}=\dfrac{3}{2}\text{ }khi\text{ }x=\dfrac{1}{2}\)

\(D=9x^2-6x+25y^2+10y+4\\ D=9x^2-6x+25y^2+10y+1+1+2\\ D=\left(9x^2-6x+1\right)+\left(25y^2+10y+1\right)+2\\ D=\left[\left(3x\right)^2-2\cdot3x\cdot1+1^2\right]+\left[\left(5y\right)^2+2\cdot5y\cdot1+1^2\right]+2\\ D=\left(3x-1\right)^2+\left(5y+1\right)^2+2\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \left(5y+1\right)^2\ge0\forall y\\ \Rightarrow\left(3x-1\right)^2+\left(5y+1\right)^2\ge0\forall x;y\\ \Rightarrow D=\left(3x-1\right)^2+\left(5y+1\right)^2+2\ge2\forall x;y\\ \text{Dấu “=” xảy ra khi : }\left\{{}\begin{matrix}\left(3x-1\right)^2=0\\\left(5y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x-1=0\\5y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=1\\5y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{5}\end{matrix}\right.\\ \text{Vậy }D_{\left(Min\right)}=2\text{ khi }x=\dfrac{1}{3};y=-\dfrac{1}{5}\)

Bình luận (0)
TL
26 tháng 10 2017 lúc 15:55

Câu 2

\(M=x^2+6x+1\\ M=x^2+6x+9-8\\ M=\left(x^2+6x+9\right)-8\\ M=\left(x+3\right)^2-8\\ Do\text{ }\left(x+3\right)^2\ge0\forall x\\ M=\left(x+3\right)^2-8\ge-8\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x+3\right)^2=0\\ \Leftrightarrow x+3=0\\ \Leftrightarrow x=-3\\ \text{Vậy }M_{\left(Min\right)}=-8\text{ khi }x=-3\)

\(N=10y-5y^2-3\\ N=10y-5y^2-5+2\\ N=-\left(5y^2-10y+5\right)+2\\ N=-5\left(y^2-2y+1\right)+2\\ N=-5\left(y-1\right)^2+2\\ Do\left(y-1\right)^2\ge0\forall x\\ \Rightarrow-\left(y-1\right)^2\le0\forall x\\ \Rightarrow-5\left(y-1\right)^2\le0\forall x\\ \Rightarrow N=-5\left(y-1\right)^2+2\le2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(y-1\right)^2=0\\ \Leftrightarrow y-1=0\\ \Leftrightarrow y=1\\ \text{Vậy }N_{\left(Max\right)}=2\text{ khi }y=1\)

Bình luận (0)
TL
26 tháng 10 2017 lúc 16:12

Câu 1:

\(A=16x^2+8x+3\\ A=16x^2+8x+1+2\\ A=\left(16x^2+8x+1\right)+2\\ A=\left(4x+1\right)^2+2\\ Do\left(4x+1\right)^2\ge0\forall x\\ \Rightarrow A=\left(4x+1\right)^2+2\ge2\forall x\\ \Rightarrow A=\left(4x+1\right)^2+2>0\forall x\\ \text{Vậy }A>0\forall x\)

\(B=y^2-5y+8\\ B=y^2-5y+\dfrac{25}{4}+\dfrac{7}{4}\\ B=\left(y^2-5y+\dfrac{25}{4}\right)+\dfrac{7}{4}\\ B=\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\\ Do\left(y-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow B=\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\\\Rightarrow B=\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}>0 \forall x\\ \text{Vậy }B>0\forall x\)

\(C=2x^2-2x+2\\ C=2x^2-2x+\dfrac{1}{2}+\dfrac{3}{2}\\ C=\left(2x^2-2x+\dfrac{1}{2}\right)+\dfrac{3}{2}\\ C=2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}\\ C=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\\ Do\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\ 2\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\ C=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}\forall x\\ C=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\forall x\\ \text{Vậy }C>0\forall x\)

\(D=9x^2-6x+25y^2+10y+4\\ D=9x^2-6x+25y^2+10y+1+1+2\\ D=\left(9x^2-6x+1\right)+\left(25y^2+10y+1\right)+2\\ D=\left(3x-1\right)^2+\left(5y+1\right)^2+2\\ Do\left(3x-1\right)^2\ge0\forall x\\ \left(5y+1\right)^2\ge0\forall y\\ \Rightarrow\left(3x-1\right)^2+\left(5y+1\right)^2\ge0\forall x;y\\ \Rightarrow D=\left(3x-1\right)^2+\left(5y+1\right)^2+2\ge2\forall x;y\\ \Rightarrow D=\left(3x-1\right)^2+\left(5y+1\right)^2+2>0\forall x;y\\ \text{Vậy }D>0\forall x;y\)

Nhìn lộn đề. Xin phép làm lại

Bình luận (1)
PL
26 tháng 10 2017 lúc 17:14

Bạn Trần quốc Lộc chép sai đề bài 2 rồi . Mình làm lại cho :

a) M = x2 + 6x - 1

M = x2 + 2.3x + 32 - 10

M = ( x + 3)2 - 10

Do : ( x + 3)2 lớn hơn hoặc bằng 0

--> ( x + 3)2 - 10 lớn hơn hoặc bằng -10

Vậy , Mmin = -10 khi và chỉ khi : x = -3

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
TN
Xem chi tiết
PN
Xem chi tiết