Bài 2: Nhân đa thức với đa thức

HN

Chứng minh:

a. \(X^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

b.\(S=a+b+c\) thì

\(S\left(S-2b\right)\left(S-2c\right)+S\left(S-2c\right)\left(S-2a\right)+S\left(S-2a\right)\left(S-2b\right)=\left(S-2a\right)\left(S-2b\left(S-2c\right)+8abc\right)\)

CC
17 tháng 5 2017 lúc 21:33

a)\(x^3+y^3+z^3-3xyz\\ \left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left[\left(x+y\right)^3+z^3\right]-\left[3xyz+3xy\left(x+y\right)\right]\\=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right] \\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+x^2-xy-xz-yz\right)\)

Bình luận (0)

Các câu hỏi tương tự
QN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết
DH
Xem chi tiết
SK
Xem chi tiết
NL
Xem chi tiết
NQ
Xem chi tiết