Bài 2: Nhân đa thức với đa thức

TN

1.tìm x

a) \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)\)

b) \(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)=3\left(x-1\right)\left(x+2\right)\)

2. CMR

a) \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

b)\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)

c)\(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

giúp mik nha

chiều nay nộp r

TK
9 tháng 7 2017 lúc 12:20

2. CMR:

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)

Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)

=> đpcm.

c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)

=> đpcm.

Bình luận (2)
TK
9 tháng 7 2017 lúc 12:26

1.

b. \(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)=3\left(x-1\right)\left(x+2\right)\)

\(\Leftrightarrow4\left(x^2+5x-x-5\right)-\left(x^2+5x+2x+10\right)=3\left(x^2+2x-x-2\right)\)

\(\Leftrightarrow4x^2+20x-4x-20-x^2-5x-2x-10=3x^2+6x-3x-6\)

\(\Leftrightarrow4x^2+20x-4x-x^2-5x-2x-3x^2-6x+3x=20+10-6\)

\(\Leftrightarrow6x=24\)

\(\Leftrightarrow x=4\)

Vậy ....

Bình luận (0)
H24
9 tháng 7 2017 lúc 13:18

\(a\text{)}.\: \left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow8x-5x^2+16-10x+4x^2-4x-8+2x^2-8=0\\ \Leftrightarrow x^2-6x=0\Leftrightarrow x\left(x-6\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
SK
Xem chi tiết
NH
Xem chi tiết
MT
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
LA
Xem chi tiết
HT
Xem chi tiết