Cho \(\left|a\right|\ge\left|b\right|\), ta có: \(\dfrac{\left|a\right|}{2009+\left|a\right|}\ge\dfrac{\left|b\right|}{2009+\left|b\right|}\)
Chứng minh rằng: \(\dfrac{\left|x\right|}{2009+\left|x\right|}+\dfrac{\left|y\right|}{2009+\left|y\right|}\ge\dfrac{\left|x-y\right|}{2009+\left|x-y\right|}\)với các số x,y bất kỳ