Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

NA

Giải phương trình: \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)

N2
2 tháng 3 2018 lúc 7:45

\(ĐKXĐ:x\ne0\)

\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}-\left(x+\dfrac{1}{x}\right)^2\right)=\left(x+4\right)^2\)\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow16=\left(x+4\right)^2\Leftrightarrow\)\(\left[{}\begin{matrix}x=-8\\x=0\end{matrix}\right.\) \(\Rightarrow x=-8\) (vì \(x\ne0\))

\(S=\left\{-8\right\}\)

Bình luận (0)
TD
6 tháng 3 2018 lúc 20:30

Đặt \(x+\dfrac{1}{x}=a\)

ta có \(\left(x+\dfrac{1}{x}\right)^2=a^2\Rightarrow x^2+2+\dfrac{1}{x^2}=a^2\Rightarrow x^2+\dfrac{1}{x^2}=a^2-2\)

ta có \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)\(\Leftrightarrow8a^2+4.\left(a^2-2\right)^2-4\left(a^2-2\right)a^2=\left(x+4\right)^2\)

\(\Leftrightarrow8a^2+4\left(a^4-4a^2+4\right)-4a^4+8a^2=\left(x+4\right)^2\)

\(\Leftrightarrow8a^2+4a^4-16a^2+16-4a^4+8a^2-\left(x+4\right)^2=0\)

\(\Leftrightarrow\left(x+4\right)^2=16\)

\(\Leftrightarrow x+4=4\) hoặc \(x+4=-4\)

\(\Leftrightarrow x=-4\) ( thỏa mãn x\(\ne\)0) hoặc x=0 (ktm x\(\ne\)0)

vậy x=-4

banh

Bình luận (1)

Các câu hỏi tương tự
VV
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
KS
Xem chi tiết
BA
Xem chi tiết