Ôn tập phép nhân và phép chia đa thức

TN

Cho các số thực a, b, c thỏa mãn a^2 + b^2 + c^2 = 9. Tính giá trị biểu thức S = (2a + 2b -c )^2 + (2b + 2c -a)^2 + (2c + 2a -b)^2

AH
29 tháng 6 2019 lúc 19:18

Lời giải:
\((2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2\)

\(=(2a+2b)^2-2c(2a+2b)+c^2+(2b+2c)^2-2a(2b+2c)+a^2+(2c+2a)^2-2b(2c+2a)+b^2\)

\(=4(a+b)^2+4(b+c)^2+4(c+a)^2+(c^2+a^2+b^2)-4c(a+b)-4b(a+c)-4a(b+c)\)

\(=4(a^2+2ab+b^2)+4(b^2+2bc+c^2)+4(c^2+2ac+a^2)+(c^2+a^2+b^2)-8(ab+bc+ac)\)

\(=9(a^2+b^2+c^2)=9.9=81\)

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
NV
Xem chi tiết
CP
Xem chi tiết
EC
Xem chi tiết
HA
Xem chi tiết
L7
Xem chi tiết
DL
Xem chi tiết
DN
Xem chi tiết
BU
Xem chi tiết