Ôn tập phép nhân và phép chia đa thức

DL

Cho biểu thức P = \(\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right):\frac{1}{6-4a}\)

a) Rút gọn biểu thức P

b) Tìm các giá trị nguyên của a để P nhận giá trị nguyên

c) Tìm a để P<0

d) Tìm P biết \(2a^2-a-3=0\)

NL
4 tháng 11 2019 lúc 16:20

ĐKXĐ: \(a\ne\frac{3}{2},a\ne-\frac{3}{2}\)

a, \(P=\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right):\frac{1}{6-4a}\)

\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}+\frac{7a-2a^2-1}{2\left(9-4a^2\right)}\right):\frac{-1}{4a-6}\)

\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}-\frac{7a-2a^2-1}{2\left(4a^2-9\right)}\right):\frac{-1}{2\left(2a-3\right)}\)

\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}-\frac{7a-2a^2-1}{2\left(2a-3\right)\left(2a+3\right)}\right)\left[-2\left(2a-3\right)\right]\)

\(=\left[\frac{2\left(a-1\right)\left(2a+3\right)-3a\left(2a-3\right)-\left(7a-2a^2-1\right)}{2\left(2a-3\right)\left(2a+3\right)}\right]\left[-2\left(2a-3\right)\right]\)

\(=\frac{4a-5}{2\left(2a-3\right)\left(2a+3\right)}\left[-2\left(2a-3\right)\right]\)

\(=-\frac{\left(4a-5\right)}{2a+3}=\frac{5-4a}{2a+3}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DL
Xem chi tiết
PC
Xem chi tiết
BT
Xem chi tiết
HP
Xem chi tiết
TN
Xem chi tiết
HD
Xem chi tiết
MS
Xem chi tiết
MS
Xem chi tiết